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0

Preliminaries

ﬂ certain amount of mathematical maturity is necessary to find and study

applications of abstract algebra. A basic knowledge of set theory, math-
ematical induction, equivalence relations, and matrices is a must. Even more
important is the ability to read and understand mathematical proofs. In this
chapter we will outline the background needed for a course in abstract algebra.

0.1 A Short Note on Proofs

Abstract mathematics is different from other sciences. In laboratory sciences
such as chemistry and physics, scientists perform experiments to discover new
principles and verify theories. Although mathematics is often motivated by phys-
ical experimentation or by computer simulations, it is made rigorous through
the use of logical arguments. In studying abstract mathematics, we take what is
called an axiomatic approach; that is, we take a collection of objects S and assume
some rules about their structure. These rules are called axioms. Using the axioms
for S, we wish to derive other information about S by using logical arguments.
We require that our axioms be consistent; that is, they should not contradict one
another. We also demand that there not be too many axioms. If a system of axioms
is too restrictive, there will be few examples of the mathematical structure.

A statement in logic or mathematics is an assertion that is either true or false.
Consider the following examples:

e 3+56-13+8/2.

o All cats are black.

e 2+3=5.

o 2x = 6 exactly when x = 4.

o Ifax?* +bx+c=0and a # 0, then x = (-b = /b2 - 4ac)/2a.

o x> —4x* +5x - 6.

All but the first and last examples are statements, and must be either true or false.
A mathematical proof is nothing more than a convincing argument about

the accuracy of a statement. Such an argument should contain enough detail

to convince the audience; for instance, we can see that the statement “2x = 6

exactly when x = 4” is false by evaluating 2 - 4 and noting that 6 # 8, an argument

that would satisfy anyone. Of course, audiences may vary widely: proofs can be
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addressed to another student, to a professor, or to the reader of a text. If more
detail than needed is presented in the proof, then the explanation will be either
long-winded or poorly written. If too much detail is omitted, then the proof may
not be convincing. Again it is important to keep the audience in mind. High
school students require much more detail than do graduate students. A good rule
of thumb for an argument in an introductory abstract algebra course is that it
should be written to convince one’s peers, whether those peers be other students
or other readers of the text.

Let us examine different types of statements. A statement could be as simple
as “10/5 = 2”; however, mathematicians are usually interested in more complex
statements such as “If p, then g,” where p and g are both statements. If certain
statements are known or assumed to be true, we wish to know what we can say
about other statements. Here p is called the hypothesis and g is known as the
conclusion. Consider the following statement: If ax? + bx + ¢ = 0 and a # 0, then

-b+Vb?-4ac

2a

X =

The hypothesis is ax? + bx + ¢ = 0 and a # 0; the conclusion is
. -b+Vb?-4ac
- 2a ’

Notice that the statement says nothing about whether or not the hypothesis is true.
However, if this entire statement is true and we can show that ax? + bx + ¢ = 0
with a # 0 is true, then the conclusion must be true. A proof of this statement
might simply be a series of equations:

ax>+bx+c=0

2

x+—) =
2a 4a?
. b £Vb?-4ac
X+ —=—
2a 2a

v -b+Vb?-4ac

2a
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If we can prove a statement true, then that statement is called a proposition.
A proposition of major importance is called a theorem. Sometimes instead of
proving a theorem or proposition all at once, we break the proof down into
modules; that is, we prove several supporting propositions, which are called
lemmas, and use the results of these propositions to prove the main result. If we
can prove a proposition or a theorem, we will often, with very little effort, be able
to derive other related propositions called corollaries.

Some Cautions and Suggestions

There are several different strategies for proving propositions. In addition to using
different methods of proof, students often make some common mistakes when
they are first learning how to prove theorems. To aid students who are studying
abstract mathematics for the first time, we list here some of the difficulties that
they may encounter and some of the strategies of proof available to them. It is
a good idea to keep referring back to this list as a reminder. (Other techniques
of proof will become apparent throughout this chapter and the remainder of the
text.)

o A theorem cannot be proved by example; however, the standard way to show
that a statement is not a theorem is to provide a counterexample.

« Quantifiers are important. Words and phrases such as only, for all, for every,
and for some possess different meanings.

 Never assume any hypothesis that is not explicitly stated in the theorem. You
cannot take things for granted.

« Suppose you wish to show that an object exists and is unique. First show that
there actually is such an object. To show that it is unique, assume that there are
two such objects, say r and s, and then show that r = s.

o Sometimes it is easier to prove the contrapositive of a statement. Proving the
statement “If p, then q” is exactly the same as proving the statement “If not g,
then not p”

o Although it is usually better to find a direct proof of a theorem, this task can
sometimes be difficult. It may be easier to assume that the theorem that you are
trying to prove is false, and to hope that in the course of your argument you
are forced to make some statement that cannot possibly be true.

Remember that one of the main objectives of higher mathematics is proving
theorems. Theorems are tools that make new and productive applications of
mathematics possible. We use examples to give insight into existing theorems
and to foster intuitions as to what new theorems might be true. Applications,
examples, and proofs are tightly interconnected—much more so than they may
seem at first appearance.
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0.2 Sets and Equivalence Relations

Set Theory

A set is a well-defined collection of objects; that is, it is defined in such a manner
that we can determine for any given object x whether or not x belongs to the
set. The objects that belong to a set are called its elements or members. We will
denote sets by capital letters, such as A or X; if a is an element of the set A, we
write a € A.

A set is usually specified either by listing all of its elements inside a pair of
braces or by stating the property that determines whether or not an object x
belongs to the set. We might write

X={x1,%2,...,Xn}
for a set containing elements xi, x5, ..., X, or
X = {x : x satisfies P}

if each x in X satisfies a certain property P. For example, if E is the set of even
positive integers, we can describe E by writing either

E={2,4,6,...}

or
E = {x: x is an even integer and x > 0}.

We write 2 € E when we want to say that 2 is in the set E, and -3 ¢ E to say that
-3 is not in the set E.
Some of the more important sets that we will consider are the following:

N = {n : n is a natural number} = {1,2,3,...};
Z ={n:nisaninteger} ={...,-1,0,1,2,...};
Q = {r: risarational number} = {p/q: p,q € Z where q # 0};
R = {x : x is a real number};

C = {z: z is a complex number}.

We find various relations between sets and can perform operations on sets.
A set A is a subset of B, written A c B or B o A, if every element of A is also an
element of B. For example,

{4,5,8} ¢ {2,3,4,5,6,7,8,9}
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and
NcZcQcRcC.

Trivially, every set is a subset of itself. A set B is a proper subset of a set A
if Bc Abut B # A. If A is not a subset of B, we write A ¢ B; for example,
{4,7,9} ¢ {2,4,5,8,9}. Two sets are equal, written A = B, if we can show that
AcBandBc A

It is convenient to have a set with no elements in it. This set is called the empty
set and is denoted by @. Note that the empty set is a subset of every set.

To construct new sets out of old sets, we can perform certain operations: the
union A U B of two sets A and B is defined as

AuB={x: xeAorxeB}
the intersection of A and B is defined by
AnB={x: xeAandx € B}.
IfA={1,3,5} and B = {1,2,3,9}, then
AUB={1,2,3,59}and AnB ={1,3}.

We can consider the union and the intersection of more than two sets. In this
case we write

n
UAi=Au...uA,

i=1

and
n
NAi=Ain...nA,
i=1
for the union and intersection, respectively, of the collection of sets A;, ..., A,.

When two sets have no elements in common, they are said to be disjoint; for
example, if E is the set of even integers and O is the set of odd integers, then E
and O are disjoint. Two sets A and B are disjoint exactly when An B = &.

Sometimes we will work within one fixed set U, called the universal set. For
any set A c U, we define the complement of A, denoted by A’, to be the set

A'={x: xeUandx ¢ A}.
We define the difference of two sets A and B to be

ANB=AnB ={x: xcAandx ¢ B}.
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Example 1. Let R be the universal set and suppose that
A={xeR:0<x<3}

and
B={xeR:2<x<4}.

Then
AnNB={xeR:2<x<3}

AUuB={xeR:0<x<4}
ANB={xeR:0<x<2}
A'={xeR: x<0orx>3}.
Proposition o.1. Let A, B, and C be sets. Then
1. AUA=A AnA=A and AN A=3;
2. AUg=Aand An@ =g;
3. AU(BUC)=(AuB)uCand An(BnC)=(AnB)nC;
4. AUB=BUAand AnB=BnA;
5. AU(BNC)=(AuB)n(AuC);
6. An(BuC)=(AnB)U(AnC).
Proof. We will prove (1) and (3) and leave the remaining results to be proven in
the exercises. (1) Observe that

AUA={x:xcAorxeA}={x:xcA}=A
and
AnA={x:xecAandxec A} ={x: xec A} = A.
Also, ANA=AnA' =g
(3) For sets A, B, and C,

AU(BuC)=Au{x: xeBorxeC}
={x:xeAorxeB,orxeC}
={x:xeAorxeB}uC
=(AuB)uC.

A similar argument proves that An (BnC) = (AnB)nC. ]

Theorem o.2 (De Morgan’s Laws). Let A and B be sets. Then
1. (AuB)' =A'nB;
2. (AnB)' =A"UB.
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Proof. (1) We must show that (AuB)’ ¢ A’n B and (AuB)' > A’ nB’. Let
x € (AuB)'. Then x ¢ AU B. So x is neither in A nor in B, by the definition of the
union of sets. By the definition of the complement, x € A" and x € B’. Therefore,
x € A'n B and we have (AUB)' c A'n B’

To show the reverse inclusion, suppose that x € A’ n B’. Then x € A’ and
x€B,andsox ¢ Aand x ¢ B. Thusx ¢ AU Band so x € (AU B)'. Hence,
(AuB) > A'nB’ andso (AUB) =A'nB"

The proof of (2) is left as an exercise. [ ]

Example 2. Other relations between sets often hold true. For example,
(ANB)n(BNA)=@.
To see that this is true, observe that
(ANB)n(BNA)=(AnB)n(BnA)=AnA ' nBnB =g2.

Cartesian Products and Mappings

Given sets A and B, we can define a new set A x B, called the Cartesian product
of A and B, as a set of ordered pairs. That is,

AxB={(a,b): ac Aand b € B}.
Example 3. If A = {x,y}, B={1,2,3},and C = &, then A x B is the set

{(x1),(x,2), (x,3), (5.1, (5,:2), (,3)}

and
AxC=ga.

We define the Cartesian product of # sets to be
Ay x--xA,={(ay,....,ay):a;€A;fori=1,...,n}.

IfA=A;=A,=--=A,, we often write A" for A x --- x A (where A would be
written n times). For example, the set R* consists of all 3-tuples of real numbers.

Subsets of A x B are called relations. We will define a mapping or function
f ¢ Ax B from a set A to a set B to be the special type of relation in which for
each element a € A there is a unique element b € B such that (g, b) € f; another
way of saying this is that for every element in A, f assigns a unique element in

B. We usually write f: A > Bor A A B. Instead of writing down ordered pairs
(a,b) € Ax B,wewrite f(a) =bor f:a~ b. The set A is called the domain of
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fand

f(A)={f(a):acA}cB
is called the range or image of f. We can think of the elements in the function’s
domain as input values and the elements in the function’s range as output values.

Figure 1. Mappings

Example 4. Suppose A = {1,2,3} and B = {a, b, c}. In Figure 1 we define rela-
tions f and g from A to B. The relation f is a mapping, but g is not because 1 € A
is not assigned to a unique element in B; that is, g(1) = a and g(1) = b.

Given a function f : A — B, it is often possible to write a list describing
what the function does to each specific element in the domain. However, not all
functions can be described in this manner. For example, the function f : R — R
that sends each real number to its cube is a mapping that must be described by
writing f(x) = x% or f: x = x°.

Consider the relation f : Q - Z given by f(p/q) = p. Weknow that1/2 = 2/4,
but is f(1/2) =1 or 22 This relation cannot be a mapping because it is not well-
defined. A relation is well-defined if each element in the domain is assigned to a
unique element in the range.

If f : A — Bisamap and the image of f is B, i.e., f(A) = B, then f is said
to be onto or surjective. A map is one-to-one or injective if a; # a, implies
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f(a1) # f(a,). Equivalently, a function is one-to-one if f(a;) = f(a,) implies
a; = d,. A map that is both one-to-one and onto is called bijective.

Examples. Let f : Z - Qbedefined by f(n) = /1. Then f is one-to-one but not
onto. Define g : Q - Z by g(p/q) = p where p/q is a rational number expressed
in its lowest terms with a positive denominator. The function g is onto but not
one-to-one.

Given two functions, we can construct a new function by using the range
of the first function as the domain of the second function. Let f : A — B and
g : B — C be mappings. Define a new map, the composition of f and g from A to

C.by (g0 f)(x) = g(f(x))-

(b)

Figure 2. Composition of maps

Example 6. Consider the functions f: A - Band g : B — C that are defined in
Figure o.2(a). The composition of these functions, go f : A — C, is defined in
Figure 0.2(b).

Example 7. Let f(x) = x* and g(x) = 2x + 5. Then
(fog)(x) = f(g(x)) = (2x +5)* = 4x* + 20x + 25

and
(9o f)(x) = g(f(x)) = 2x* +5.

In general, order makes a difference; that is, in most cases f o g # go f.
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Example 8. Sometimes it is the case that f o g = go f. Let f(x) = x* and
g(x) = ¥/x. Then

(fog)(x)=f(g(x)) = f(/x) = (V/x)' =x

and
(9o f)(x) = g(f(x)) = g(x*) = Vx* = x.

Example 9. Given a 2 x 2 matrix

we can define a map Ty : R* - R? by
Ta(x,y) = (ax + by, cx +dy)

for (x, y) in R2. This is actually matrix multiplication; that s,

a b)[(x\ ([ax+by
c d)\y] \ex+dy)
Maps from R" to R™ given by matrices are called linear maps or linear transfor-

mations.

Example 10. Suppose that S = {1,2,3}. Defineamap 7: S - S by
n(l)=2, n(2)=1, =(3)=3.

This is a bijective map. An alternative way to write 7 is

1 2 3 1 2 3
s s s - ’
( 1 #(2) (3)) (2 1 3)

For any set S, a one-to-one and onto mapping 77 : § — S is called a permutation
of S.

Theoremo.3. Let f: A— B,g:B — C,and h: C — D. Then

1. The composition of mappings is associative; that is, (ho g)o f =ho (go f);
2. If f and g are both one-to-one, then the mapping g o f is one-to-one;

3. If f and g are both onto, then the mapping g o f is onto;

4. If f and g are bijective, then sois g o f.

Proof. We will prove (1) and (3). Part (2) is left as an exercise. Part (4) follows
directly from (2) and (3).
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(1) We must show that

ho(gof)=(hog)of.
For a € A we have

(ho(gof))(a)=h((gof)(a))
=h(g(f(a)))
= (hog)(f(a))
=((hog)of)(a).
(3) Assume that f and g are both onto functions. Given ¢ € C, we must show
that there exists an a € A such that (go f)(a) = g(f(a)) = c. However, since g

is onto, there is a b € B such that g(b) = c. Similarly, there is an a € A such that
f(a) = b. Accordingly,

(gof)(a)=g(f(a)) =g(b) =c. "

If S is any set, we will use idy or id to denote the identity mapping from S to
itself. Define this map by id(s) =sforalls € S. Amap g: B - Ais an inverse
mappingof f : A— Bif go f = ids and f o g = idp; in other words, the inverse
function of a function simply “undoes” the function. A map is said to be invertible
if it has an inverse. We usually write ! for the inverse of f.

Example 11. The function f(x) = x* has inverse f~!(x) = ¥/x by Example 8.

Example 12. The natural logarithm and the exponential functions, f(x) =Inx
and f7!(x) = e, are inverses of each other provided that we are careful about
choosing domains. Observe that

F(FUx)) = f(e¥) =Ine* = x

and
) = f(Inx) = e = x

whenever composition makes sense.

()

Then A defines a map from R?* to R? by

Example 13. Suppose that

Ta(x,y) = (3x + y,5x +2y).
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We can find an inverse map of T4 by simply inverting the matrix A; that is,
T,' = T4-1. In this example,
a2 )
A= (—5 3)

hence, the inverse map is given by
T (x,y) = (2x — y, —5x + 3y).
It is easy to check that

Ty o Ta(x,y) = Tao Ty (x,5) = (x, ).

Not every map has an inverse. If we consider the map

Tg(x,y) = (3x,0)

30
(o 1)

then an inverse map would have to be of the form

given by the matrix

T (x,y) = (ax + by, cx + dy)

and
(x,y) = To Tz'(x, y) = (3ax + 3by,0)

for all x and y. Clearly this is impossible because y might not be o.

Example 14. Given the permutation

ﬂ_123
12 31

on S = {1,2,3}, it is easy to see that the permutation defined by

ﬂ_1_123
31 2

is the inverse of 7. In fact, any bijective mapping possesses an inverse, as we will
see in the next theorem.
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Theorem o.4. A mapping is invertible if and only if it is both one-to-one and
onto.

Proof. Suppose first that f : A — B is invertible with inverse g : B - A. Then
go f = id, is the identity map; that is, g(f(a)) = a. If a;, a, € A with f(a;) =
f(az), then a; = g(f(a1)) = g(f(az2)) = a,. Consequently, f is one-to-one.
Now suppose that b € B. To show that f is onto, it is necessary to find an a € A
such that f(a) = b, but f(g(b)) = b with g(b) € A. Leta = g(b).

Now assume the converse; that is, let f be bijective. Let b € B. Since f is onto,
there exists an a € A such that f(a) = b. Because f is one-to-one, 4 must be
unique. Define g by letting g(b) = a. We have now constructed the inverse of

f. ]

Equivalence Relations and Partitions

A fundamental notion in mathematics is that of equality. We can generalize
equality with the introduction of equivalence relations and equivalence classes.
An equivalence relation on a set X is a relation R c X x X such that

o (x,x) € R for all x € X (reflexive property);

o (x,y) € Rimplies (y, x) € R (symmetric property);

o (x,y)and (y,z) € Rimply (x,z) € R (transitive property).

Given an equivalence relation R on a set X, we usually write x ~ y instead of
(x, ¥) € R. If the equivalence relation already has an associated notation such as
=, 5, or 2, we will use that notation.

Example 15. Let p, g, 7, and s be integers, where g and s are nonzero. Define
p/q ~ r/sif ps = gr. Clearly ~ is reflexive and symmetric. To show that it is also
transitive, suppose that p/g ~ r/sand r/s ~ t/u, with g, s, and u all nonzero. Then
ps = qr and ru = st. Therefore,

psu = qru = gst.

Since s # 0, pu = gt. Consequently, p/q ~ t/u.

Example16. Suppose that f and g are differentiable functions on R. We can define
an equivalence relation on such functions by letting f(x) ~ g(x) if f'(x) = g'(x).
It is clear that ~ is both reflexive and symmetric. To demonstrate transitivity,
suppose that f(x) ~ g(x) and g(x) ~ h(x). From calculus we know that f(x) -
g(x) = g and g(x) — h(x) = c,, where ¢; and c, are both constants. Hence,

f(x) =h(x) = (f(x) = g(x)) + (9(x) = h(x)) = c1 = c2
and f'(x) — h'(x) = 0. Therefore, f(x) ~ h(x).
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Example 17. For (x;, y1) and (x2, 2) in R?, define (x1, y1) ~ (x2, y2) if xf + y§ =
x% + y3. Then ~ is an equivalence relation on R,

Example 18. Let A and B be 2 x 2 matrices with entries in the real numbers. We
can define an equivalence relation on the set of 2 x 2 matrices, by saying A ~ B if
there exists an invertible matrix P such that PAP™! = B. For example, if

12 18 33
A‘(—1 1) andB‘(—u 20)’

then A ~ B since PAP™! = B for
2 5
p_(1 3).

Let I be the 2 x 2 identity matrix; that is,

!

Then IAI™' = IAI = A; therefore, the relation is reflexive. To show symmetry,
suppose that A ~ B. Then there exists an invertible matrix P such that PAP™! = B.
So

A=P'BP=P'B(PH)".

Finally, suppose that A ~ B and B ~ C. Then there exist invertible matrices P and
Q such that PAP™! = Band QBQ™! = C. Since

C=QBQ'=QPAP'Q™' = (QP)A(QP) ™},

the relation is transitive. Two matrices that are equivalent in this manner are said
to be similar.

A partition P of a set X is a collection of nonempty sets Xj, X,, ... such that
X;nX;=gfori# jand Uy Xx = X. Let ~ be an equivalence relation on a set
X and letx € X. Then [x] = {y € X : y ~ x} is called the equivalence class of x.
We will see that an equivalence relation gives rise to a partition via equivalence
classes. Also, whenever a partition of a set exists, there is some natural underlying
equivalence relation, as the following theorem demonstrates.

Theorem o.5. Given an equivalence relation ~ on a set X, the equivalence classes
of X form a partition of X. Conversely, if P = {X;} is a partition of a set X, then
there is an equivalence relation on X with equivalence classes X;.
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Proof. Suppose there exists an equivalence relation ~ on the set X. For any x € X,
the reflexive property shows that x € [x] and so [x] is nonempty. Clearly X =
Uxex[x]. Nowlet x, y € X. We need to show that either [x] = [y] or [x]n[y] = @.
Suppose that the intersection of [x] and [ y] is not empty and that z € [x] n [y].
Then z ~ x and z ~ y. By symmetry and transitivity x ~ y; hence, [x] c [y].
Similarly, [y] ¢ [x] and so [x] = [y]. Therefore, any two equivalence classes are
either disjoint or exactly the same.

Conversely, suppose that P = {X;} is a partition of a set X. Let two elements
be equivalent if they are in the same partition. Clearly, the relation is reflexive. If x
is in the same partition as y, then y is in the same partition as x, so x ~ y implies
y ~ x. Finally, if x is in the same partition as y and y is in the same partition as z,
then x must be in the same partition as z, and transitivity holds. ]

Corollary 0.6. Two equivalence classes of an equivalence relation are either dis-
joint or equal.

Let us examine some of the partitions given by the equivalence classes in the
last set of examples.

Example 19. In the equivalence relation in Example 15, two pairs of integers,
(p,q) and (r, s), are in the same equivalence class when they reduce to the same
fraction in its lowest terms.

Example 20. In the equivalence relation in Example 16, two functions f(x) and
g(x) are in the same partition when they differ by a constant.

Example 21. We defined an equivalence class on R* by (x1, 1) ~ (x2, y2) if
x{ + y7 = x3 + y3. Two pairs of real numbers are in the same partition when they
lie on the same circle about the origin.

Example 22. Let r and s be two integers and suppose that n € N. We say that r is
congruent to s modulo #, or r is congruent to s mod #, if r — s is evenly divisible
by n; that is, r — s = nk for some k € Z. In this case we write r = s (mod n).
For example, 41 =17 (mod 8) since 41 — 17 = 24 is divisible by 8. We claim that
congruence modulo n forms an equivalence relation of Z. Certainly any integer
r is equivalent to itself since r — r = 0 is divisible by n. We will now show that
the relation is symmetric. If r = s (mod n), then r —s = —(s — r) is divisible by
n. So s — r is divisible by n and s = r (mod n). Now suppose that 7 = s (mod n)
and s = t (mod n). Then there exist integers k and / such that r — s = kn and
s —t = In. To show transitivity, it is necessary to prove that r — ¢ is divisible by n.
However,
r—t=r—-s+s—t=kn+lIn=(k+1)n,

and so r — t is divisible by n.
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If we consider the equivalence relation established by the integers modulo 3,
then
[0]={...,-3,0,3,6,...}
N={..,-21,4,7,...}
[2]=4...,-1,2,5,8,...}.

Notice that [0] u [1] U [2] = Z and also that the sets are disjoint. The sets [0], [1],
and [2] form a partition of the integers.

The integers modulo # are a very important example in the study of abstract
algebra and will become quite useful in our investigation of various algebraic
structures such as groups and rings. In our discussion of the integers modulo n
we have actually assumed a result known as the division algorithm, which will be
stated and proved in Chapter 1.

Exercises

1. Suppose that
A={x:xeNandxiseven},
B ={x:xeNand x is prime},
C = {x:x eNand x is a multiple of 5}.
Describe each of the following sets.
(a) AnB (c) AuB
(b) BnC (d An(BuUC)
2. IfA={a,b,c},B={1,2,3},C = {x},and D = @, list all of the elements in each of the
following sets.
(a) AxB (c) AxBxC
(b) BxA (d) AxD
3. Find an example of two nonempty sets A and B for which A x B = B x A is true.
4. ProveAug=Aand Ang =@.
5. Prove AUB=BuAand AnB=BnA.
6. Prove AU(BNC)=(AUuB)n(AuC).
7. Prove An(BUC)=(AnB)u(AnC).
8. Prove Ac Bifand onlyif AnB = A.
9. Prove (AnB) =A"UB.
10. Prove AUB=(ANB)U(ANB)uU (B~ A).
11. Prove (AUB) x C=(Ax C)u(BxC).
12. Prove (AnB)\ B=g@.
13. Prove (AUB)\B=A\B.
14. Prove AN (BUC) = (ANB)n(ANC).
15. Prove AN (BN C)=(AnB)\ (AnC).
16. Prove (ANB)U (BN C) = (AUB)~ (AnB).
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17. Which of the following relations f : ) — @ define a mapping? In each case, supply a
reason why f is or is not a mapping.

(a) f(P/Q)=% (c) f(p/q):p(;q
®) f(p/q) = %‘Z @ f(p/q)= % - Z

18. Determine which of the following functions are one-to-one and which are onto. If the
function is not onto, determine its range.

(a) f:R— Rdefined by f(x) = e”
(b) f:2Z - Z defined by f(n) = n*+3
(¢) f:R— Rdefined by f(x) =sinx
(d) f:Z - Z defined by f(x) = x*
19. Let f: A — Band g: B — C be invertible mappings; that is, mappings such that £
and g~ exist. Show that (go f)™' = fog™\
20. (a) Define a function f : N — N that is one-to-one but not onto.
(b) Define a function f : N — N that is onto but not one-to-one.
21. Prove the relation defined on R? by (x1, y1) ~ (x2,y2) if xf + yf = x3 + y3 is an
equivalence relation.

22. Let f: A— Band g: B — Cbe maps.
(a) If f and g are both one-to-one functions, show that g o f is one-to-one.
(b) If g o f is onto, show that g is onto.
(c) If g o f is one-to-one, show that f is one-to-one.
(d) If g o f is one-to-one and f is onto, show that g is one-to-one.
(e) If go fisonto and g is one-to-one, show that f is onto.
23. Define a function on the real numbers by
x+1
w1

flx) =

What are the domain and range of f? What is the inverse of f2 Compute f o f~' and
fhof.
24. Let f: X — Y beamap with A, A, c Xand By, B> c Y.
(a) Prove f(A1UA2) = f(A1) U f(A2).
(b) Prove f(A1nAz) c f(A1) n f(A2). Give an example in which equality fails.
(c) Prove f'(BiuB;) = f'(Bi) U f'(B.), where

F'(B)={xeX: f(x)eB}.

(d) Prove f'(BinB,) = f'(B)) n f(By).
(e) Prove f /(Y \Bi) =X~ f'(B).
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25. Determine whether or not the following relations are equivalence relations on the
given set. If the relation is an equivalence relation, describe the partition given by it. If
the relation is not an equivalence relation, state why it fails to be one.

(@) x~yinRifx>y () x~yinRif|x—y| <4
(b) m~ninZifmn>0 (d m~ninZifm=n (mod 6)

26. Define a relation ~ on R* by stating that (a, b) ~ (¢, d) if and only if a® + b* < ¢* + d*.
Show that ~ is reflexive and transitive but not symmetric.

27. Show that an m x n matrix gives rise to a well-defined map from R” to R™.

28. Find the error in the following argument by providing a counterexample. “The reflexive
property is redundant in the axioms for an equivalence relation. If x ~ y, then y ~ x by
the symmetric property. Using the transitive property, we can deduce that x ~ x”

29. Projective Real Line. Define a relation on R \ (0,0) by letting (x1, y1) ~ (x2, y2)
if there exists a nonzero real number A such that (x1, 1) = (Ax2,Ay2). Prove that ~
defines an equivalence relation on B \ (0, 0). What are the corresponding equivalence
classes? This equivalence relation defines the projective line, denoted by P(IR), which is
very important in geometry.
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The Integers

he integers are the building blocks of mathematics. In this chapter we will

investigate the fundamental properties of the integers, including math-

ematical induction, the division algorithm, and the Fundamental Theorem of
Arithmetic.

1.1 Mathematical Induction

Suppose we wish to show that

n(n+1)
2

1+2+--+n=

for any natural number #. This formula is easily verified for small numbers such
as n =1, 2, 3, or 4, but it is impossible to verify for all natural numbers on a
case-by-case basis. To prove the formula true in general, a more generic method
is required.

Suppose we have verified the equation for the first n cases. We will attempt to
show that we can generate the formula for the (# +1)th case from this knowledge.
The formula is true for n = 1 since

1(1+1)
-

If we have verified the first n cases, then

n(n+1)+
——+n

1+2+-+n+(n+1)= +1

n>+3n+2

2
_(n+)[(n+1) +1]
- 2

This is exactly the formula for the (n + 1)th case.

This method of proof is known as mathematical induction. Instead of attempt-
ing to verify a statement about some subset S of the positive integers N on a
case-by-case basis, an impossible task if S is an infinite set, we give a specific proof
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for the smallest integer being considered, followed by a generic argument showing
that if the statement holds for a given case, then it must also hold for the next case
in the sequence. We summarize mathematical induction in the following axiom.
First Principle of Mathematical Induction. Let S(#7) be a statement about inte-
gers for n € N and suppose S(#) is true for some integer 7. If, for all integers k
with k > ny, S(k) implies that S(k + 1) is true, then S(n) is true for all integers n
greater than n.

Example 1. For all integers n > 3,2" > n + 4. Since
8=2">3+4=7,

the statement is true for ny = 3. Assume that 28 > k + 4 for k > 3. Then
2K+l =2.2F 5 2(k + 4). But

2(k+4)=2k+8>k+5=(k+1)+4
since k is positive. Hence, by induction, the statement holds for all integers n > 3.
Example 2. Every integer 10"*! +3-10" + 5 is divisible by 9 for n € N. For n =1,
10" +3-10+5=135=9-15
is divisible by 9. Suppose that 10¥*! + 3 - 10% + 5 is divisible by 9 for k > 1. Then
106+ 13,1051 1 5 2 10K42 4 310K+ 150 — 45
=10(10%*! +3.10% +5) — 45
is divisible by 9.

Example 3. We will prove the binomial theorem using mathematical induction;
that is,

(a+b)" = Zn: (Z)akb”_k,

k=0

where a and b are real numbers, n € N, and

()50

is the binomial coefficient. We first show that

(")) ()
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This result follows from

(Z) " (kli 1) - k!(:i 0k -1)1(]:- K+ 1)!
_ (n+1)!
S kl(n+1-k)!

_ (n + 1)

=)
If n = 1, the binomial theorem is easy to verify. Now assume that the result is true
for n greater than or equal to 1. Then

(a+b)""=(a+b)(a+b)"

=(a+b) (kZ:) (:)akb”_k)
e gl

+Z":( ”1) kpyn+i- k+z( ) kpn+iek , pn+l
k=1 -

(SR RS

)akbnﬂ—k.

+>r
— L

Z (s

We have an equivalent statement of the Principle of Mathematical Induction

that is often very useful:
Second Principle of Mathematical Induction. Let S(#) be a statement about
integers for n € N and suppose S(#¢) is true for some integer ng. If S(no), S(no +
1),...,S8(k) imply that S(k +1) for k > ng, then the statement S(#n) is true for all
integers n greater than ny.

A nonempty subset S of Z is well-ordered if S contains a least element. Notice
that the set Z is not well-ordered since it does not contain a smallest element.
However, the natural numbers are well-ordered.

Principle of Well-Ordering. Every nonempty subset of the natural numbers is
well-ordered.

The Principle of Well-Ordering is equivalent to the Principle of Mathematical
Induction.

Lemma 1.1. The Principle of Mathematical Induction implies that 1 is the least
positive natural number.
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Proof. Let S ={neN:n>1}. Thenle S. Now assume that n € S; that is, n > 1.
Since n +1 > 1, n +1 € S; hence, by induction, every natural number is greater
than or equal to 1. [ ]

Theorem 1.2. The Principle of Mathematical Induction implies that the natural
numbers are well-ordered.

Proof. We must show that if S is a nonempty subset of the natural numbers, then S
contains a smallest element. If S contains 1, then the theorem is true by Lemma 1.1.
Assume that if S contains an integer k such that 1 < k < #n, then S contains a
smallest element. We will show that if a set S contains an integer less than or
equal to n + 1, then S has a smallest element. If S does not contain an integer less
than # + 1, then n + 1 is the smallest integer in S. Otherwise, since S is nonempty,
S must contain an integer less than or equal to #. In this case, by induction, S
contains a smallest integer. ]

Induction can also be very useful in formulating definitions. For instance,
there are two ways to define n!, the factorial of a positive integer .

o 'The explicit definition: n! =1-2-3---(n-1) - n.
o 'The inductive or recursive definition: 1! = 1and n! = n(n - 1)! forn > 1.

Every good mathematician or computer scientist knows that looking at prob-
lems recursively, as opposed to explicitly, often results in better understanding of
complex issues.

1.2 The Division Algorithm

An application of the Principle of Well-Ordering that we will use often is the
division algorithm.

Theorem 1.3 (Division Algorithm). Let a and b be integers, with b > 0. Then
there exist unique integers g and r such that

a=bqg+r
where 0 < r < b.

Proof. This is a perfect example of the existence-and-uniqueness type of proof.
We must first prove that the numbers q and r actually exist. Then we must show
that if ¢’ and r’ are two other such numbers, then g = ¢’ and r = r'.

Existence of q and r. Let

S={a-bk:keZanda-bk>0}.

If0 € S, then b divides a, and we canlet g = a/band r = 0. If 0 ¢ S, we can use
the Well-Ordering Principle. We must first show that S is nonempty. If a > 0,
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thena-b-0€S.Ifa <0, thena—b(2a) = a(l1-2b) € S. In either case S + @.
By the Well-Ordering Principle, S must have a smallest member, say r = a — bq.
Therefore, a = bq + r, r > 0. We now show that r < b. Suppose that r > b. Then

a-b(qg+1l)=a-bg-b=r-b>0.

In this case we would have a — b(g +1) in the set S. But then a—b(q+1) < a—bg,
which would contradict the fact that r = a — bq is the smallest member of S. So
r<b.Since0¢S,r+bandsor<b.

Uniqueness of q and r. Suppose there exist integers r, ', g, and ¢’ such that

a=bq+r,0<r<b

and
a=bq +r,0<r <b.

Then bq + r = bq’ + . Assume that #' > r. From the last equation we have
b(g-q') = r' - r; therefore, b must divide ' — rand 0 < ' — r < 7' < b. This is
possible only if ' — r = 0. Hence, r = v and q = ¢q'. ]

Let a and b be integers. If b = ak for some integer k, we write a | b. An integer
d is called a common divisor of a and b if d | a and d | b. The greatest common
divisor of integers a and b is a positive integer d such that d is a common divisor
of a and b and if d’ is any other common divisor of a and b, then d’ | d. We write
d = ged(a, b); for example, ged(24,36) = 12 and ged(120,102) = 6. We say that
two integers a and b are relatively prime if gcd(a, b) = 1.

Theorem 1.4. Let a and b be nonzero integers. Then there exist integers r and s
such that
ged(a, b) = ar + bs.

Furthermore, the greatest common divisor of a and b is unique.

Proof. Let
S={am+bn:m,neZand am+bn>0}.

Clearly, the set S is nonempty; hence, by the Well-Ordering Principle S must have
a smallest member, say d = ar + bs. We claim that d = gcd(a, b). Writea = dq+r
where 0 < r<d.Ifr >0, then

r=a-dq
=a— (ar+bs)q
=a-arq-bsq

=a(l-rq) +b(-sq),
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which is in S. But this would contradict the fact that d is the smallest member
of S. Hence, r = 0 and d divides a. A similar argument shows that d divides b.
Therefore, d is a common divisor of a and b.

Suppose that d” is another common divisor of a and b, and we want to show
that d’ | d. If weleta = d'h and b = d'k, then

d=ar+bs=dhr+d'ks=d (hr+ks).

So d’ must divide d. Hence, d must be the unique greatest common divisor of a
and b. -

Corollary 1.5. Let a and b be two integers that are relatively prime. Then there
exist integers r and s such that ar + bs = L.

The Euclidean Algorithm

Among other things, Theorem 1.4 allows us to compute the greatest common

divisor of two integers.

Example 4. Let us compute the greatest common divisor of 945 and 2415. First

observe that
2415 =945-2 + 525

945 =525-1+ 420

525 =420-1+105

420=105-4+0.
Reversing our steps, 105 divides 420, 105 divides 525, 105 divides 945, and 105
divides 2415. Hence, 105 divides both 945 and 2415. If d were another com-
mon divisor of 945 and 2415, then d would also have to divide 105. Therefore,
gcd(945,2415) = 105.

If we work backward through the above sequence of equations, we can also
obtain numbers r and s such that 945r + 2415s = 105. Observe that

105 = 525 + (1) - 420
=525+ (1) - [945 + (~1) - 525]
=2.525+(-1)-945
= 2. [2415 + (-2) - 945] + (-1) - 945
= 22415 + (=5) - 945.

So r = -5 and s = 2. Notice that r and s are not unique, since r =41 and s = -16
would also work.
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To compute ged(a, b) = d, we are using repeated divisions to obtain a decreas-
ing sequence of positive integers r; > r, > --- > r, = d; that is,
b=aq +n
a=riq;+r1;

r =143 +713

Tn—2 =Tp-1qn t Ty
"n-1= T"nqn+1.
To find r and s such that ar+ bs = d, we begin with this last equation and substitute
results obtained from the previous equations:
d=r,
=Tn-2 —Tu-19n
=Trp-2— qn(rn—_’) - qn—lrn—Z)

= —qnTn-3 t+ (1 + QnQn—l)rn—Z

=ra + sb.

The algorithm that we have just used to find the greatest common divisor d of
two integers a and b and to write d as the linear combination of a and b is known
as the Euclidean algorithm.

Prime Numbers

Let p be an integer such that p > 1. We say that p is a prime number, or simply p
is prime, if the only positive numbers that divide p are 1 and p itself. An integer
n > 1 that is not prime is said to be composite.

Lemma 1.6 (Euclid). Let a and b be integers and p be a prime number. If p | ab,
then either p | a or p | b.

Proof. Suppose that p does not divide a. We must show that p | b. Since
gcd(a, p) =1, there exist integers r and s such that ar + ps = 1. So

b =b(ar+ ps) = (ab)r + p(bs).

Since p divides both ab and itself, p must divide b = (ab)r + p(bs). ]
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Theorem 1.7 (Euclid). There exist an infinite number of primes.

Proof. We will prove this theorem by contradiction. Suppose that there are only a
finite number of primes, say p1, p2, ..., pn. Let p = p1p2--pn + 1. We will show
that p must be a different prime number, which contradicts the assumption that
we have only n primes. If p is not prime, then it must be divisible by some p;
for1 < i < n. In this case p; must divide p;p,---p, and also divide 1. This is a
contradiction, since p > L. ]

Theorem 1.8. (Fundamental Theorem of Arithmetic) Let #n be an integer such
that n > 1. Then

n=p1p2Prs
where py, ..., px are primes (not necessarily distinct). Furthermore, this factor-
ization is unique; that is, if

n=qqzqi,

then k = [ and the g;’s are just the p;’s rearranged.

Proof. Uniqueness. To show uniqueness we will use induction on #. The theorem
is certainly true for n = 2 since in this case n is prime. Now assume that the result
holds for all integers m such that1 < m < n, and

n=piprPr = q192°"9i>

where p; < pp < - < pyand gy < g5 < -+ < g;. By Lemma 1.6, p; | g; for some
i=1,...,land q | pjforsome j=1,...,k. Since all of the p;’s and g;’s are prime,
p1=giand q; = p;. Hence, p; = g1 since p; < pj = q1 < g; = p1. By the induction
hypothesis,

l’l, — pz...pk =q2qi

has a unique factorization. Hence, k =l and g; = p; fori=1,..., k.

Existence. To show existence, suppose that there is some integer that cannot
be written as the product of primes. Let S be the set of all such numbers. By the
Principle of Well-Ordering, S has a smallest number, say a. If the only positive
factors of a are a and 1, then a is prime, which is a contradiction. Hence, a = a4,
where1l< gy < aand 1< a, < a. Neither a; € S nor a, € S, since a is the smallest
element in S. So

ay = pr--pr
az =(q1--qs-
Therefore,
a=aa; = pl"'prql"'qs-

So a ¢ S, which is a contradiction. [ ]
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Historical Note

Prime numbers were first studied by the ancient Greeks. Two important results from
antiquity are Euclid’s proof that an infinite number of primes exist and the Sieve of Eratos-
thenes, a method of computing all of the prime numbers less than a fixed positive integer
n. One problem in number theory is to find a function f such that f(n) is prime for each
integer n. Pierre Fermat (16012-1665) conjectured that 2% + 1 was prime for all 7, but later
it was shown by Leonhard Euler (1707-1783) that

5
2% +1=4,294,967,297

is a composite number. One of the many unproven conjectures about prime numbers is
Goldbach’s Conjecture. In a letter to Euler in 1742, Christian Goldbach stated the conjecture
that every even integer with the exception of 2 seemed to be the sum of two primes: 4 = 2+2,
6 = 3+ 3,8 = 3+5,.... Although the conjecture has been verified for the numbers up
through 100 million, it has yet to be proven in general. Since prime numbers play an
important role in public key cryptography, there is currently a great deal of interest in
determining whether or not a large number is prime.

Exercises

1. Prove that
2 n(n+1)(2n+1)

6

2 2
1"+2°+--+n

for n e N.
2. Prove that

2 2
1
13+23+_“+n3:$

for n e N.
3. Prove that n! > 2" for n > 4.

4. Prove that
n(3n-1)x

x+4x+7x+-+(Bn-2)x= 5

for n e N.
5. Prove that 10" +10” + 11is divisible by 3 for n € N.
6. Prove that 4 -10*" + 9 -10*""" + 5 is divisible by 99 for 1 € N.
7. Show that

8. Prove the Leibniz rule for (" (x), where f (") is the nth derivative of f; that is, show
that

196 = 3 (1)1 ).

9. Use induction to prove that 1+ 2 + 2% + -+ 2" = 2" —1forn e N.
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10. Prove that
1 1 n

.. + — I —
n(n+1) n+l
for n e N.
11. If x is a nonnegative real number, then show that (1+ x)" —1> nx forn =0,1,2,....

12. Power Sets. Let X be a set. Define the power set of X, denoted P(X), to be the set of
all subsets of X. For example,

P({a,b}) = {@,{a},{b},{a, b}}.

For every positive integer n, show that a set with exactly n elements has a power set
with exactly 2" elements.

13. Prove that the two principles of mathematical induction stated in Section 1.1 are
equivalent.

14. Show that the Principle of Well-Ordering for the natural numbers implies that 1 is the
smallest natural number. Use this result to show that the Principle of Well-Ordering
implies the Principle of Mathematical Induction; that is, show that if S ¢ N such that
le Sand n+1¢€ S whenever n € S, then S =N.

15. For each of the following pairs of numbers a and b, calculate gcd(a,b) and find
integers r and s such that gcd(a, b) = ra + sb.

(a) 14 and 39 (d) 471and 562
(b) 234 and 165 (e) 23,771and 19,945
(c) 1739 and 9923 (f) —4357 and 3754

16. Let a and b be nonzero integers. If there exist integers r and s such that ar + bs =1,
show that a and b are relatively prime.

17. Fibonacci Numbers. The Fibonacci numbers are
1,1,2,3,5,8,13,21,....

We can define them inductively by fi =1, f, =1, and fu+2 = fus1 + fuforn e N.
(a) Prove that f, <2".

(b) Prove that fui1fu—1 = ff +(-1)" n>2.

(c) Provethat f, = [(1++/5)" - (1-+/5)"]/2"V/5.

(d) Show that lim,—eo fu/fur1 = (v/5—1)/2.

(e) Prove that f, and f,41 are relatively prime.

18. Let a and b be integers such that gcd(a,b) = 1. Let r and s be integers such that
ar + bs = 1. Prove that

ged(a,s) = ged(r, b) = ged(r,s) =1.

19. Letx, y € N be relatively prime. If x y is a perfect square, prove that x and y must both
be perfect squares.

20. Using the division algorithm, show that every perfect square is of the form 4k or 4k +1
for some nonnegative integer k.
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21. Suppose that a, b, r, s are coprime and that

Prove that a, 7, and s are odd and b is even.

22. Let n € N. Use the division algorithm to prove that every integer is congruent mod »
to precisely one of the integers 0,1, ..., n — 1. Conclude that if 7 is an integer, then there
is exactly one s in Z such that 0 < s < nand [r] = [s]. Hence, the integers are indeed
partitioned by congruence mod #.

23. Define the least common multiple of two nonzero integers a and b, denoted lem(a, b),
to be the nonnegative integer m such that both a and b divide m, and if a and b divide
any other integer #, then m also divides n. Prove that any two integers a and b have a
unique least common multiple.

24. If d = ged(a, b) and m = lem(a, b), prove that dm = |ab.

25. Show thatlem(a, b) = ab if and only if gcd(a, b) = 1.

26. Prove that ged(a, ¢) = ged(b, ¢) = 1if and only if gcd(ab, ¢) = 1 for integers a, b, and
c.

27. Leta, b, c € Z. Prove that if gcd(a,b) =1and a | be, then a | c.

28. Let p > 2. Prove that if 2 — 1 is prime, then p must also be prime.

29. Prove that there are an infinite number of primes of the form 6x + 1.

30. Prove that there are an infinite number of primes of the form 4n — 1.

31. Using the fact that 2 is prime, show that there do not exist integers p and g such that
p* = 2¢°. Demonstrate that therefore \/2 cannot be a rational number.

Programming Exercises

1. The Sieve of Eratosthenes. One method of computing all of the prime numbers less
than a certain fixed positive integer N is to list all of the numbers # such that1 < n < N.
Begin by eliminating all of the multiples of 2. Next eliminate all of the multiples of
3. Now eliminate all of the multiples of 5. Notice that 4 has already been crossed out.
Continue in this manner, noticing that we do not have to go all the way to Nj it suffices
to stop at v/N. Using this method, compute all of the prime numbers less than N = 250.
We can also use this method to find all of the integers that are relatively prime to an
integer N. Simply eliminate the prime factors of N and all of their multiples. Using this
method, find all of the numbers that are relatively prime to N = 120. Using the Sieve of
Eratosthenes, write a program that will compute all of the primes less than an integer N.

2. Let N® = NU {0}. Ackermann’s function is the function A : N° x N° — N defined by
the equations

A(0,y) =y+1,
A(x +1,0) = A(x,1),
Alx+Ly+1)=A(x, A(x+1,¥)).

Use this definition to compute A(3,1). Write a program to evaluate Ackermann’s func-
tion. Modify the program to count the number of statements executed in the program



30 THE INTEGERS

when Ackermann’s function is evaluated. How many statements are executed in the
evaluation of A(4,1)? What about A(5,1)?

3. Write a computer program that will implement the Euclidean algorithm. The program
should accept two positive integers a and b as input and should output gcd(a, b) as well
as integers r and s such that

gcd(a, b) = ra + sb.
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Groups

fWe begin our study of algebraic structures by investigating sets associated

with single operations that satisfy certain reasonable axioms; that is, we
want to define an operation on a set in a way that will generalize such familiar
structures as the integers Z together with the single operation of addition, or
invertible 2 x2 matrices together with the single operation of matrix multiplication.
The integers and the 2 x 2 matrices, together with their respective single operations,
are examples of algebraic structures known as groups.

The theory of groups occupies a central position in mathematics. Modern
group theory arose from an attempt to find the roots of a polynomial in terms
of its coeflicients. Groups now play a central role in such areas as coding theory,
counting, and the study of symmetries; many areas of biology, chemistry, and
physics have benefited from group theory.

2.1 The Integers mod »n and Symmetries

Let us now investigate some mathematical structures that can be viewed as sets
with single operations.

The Integers mod n

The integers mod n have become indispensable in the theory and applications of
algebra. In mathematics they are used in cryptography, coding theory, and the
detection of errors in identification codes.

We have already seen that two integers a and b are equivalent mod # if n
divides a — b. The integers mod # also partition Z into n different equivalence
classes; we will denote the set of these equivalence classes by Z,.. Consider the
integers modulo 12 and the corresponding partition of the integers:

[0] =
(1]

. -12,0,12,24,...0,
{...,-11,1,13,25,.. .},

] ={...,-1,11,23,35,...}.

When no confusion can arise, we will use 0,1, .. .,11 to indicate the equivalence
classes [0], [1], ..., [11] respectively. We can do arithmetic on Z,,. For two integers
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a and b, define addition modulo 7 to be (a + b) (mod n); that is, the remainder
when a + b is divided by n. Similarly, multiplication modulo # is defined as (ab)
(mod n), the remainder when ab is divided by n.

Example 1. The following examples illustrate integer arithmetic modulo #:

7+4=1 (mod5) 7-3=1 (mod 5)
3+5=0 (mod 8) 3-5=7 (mod 8)
3+4=7 (mod 12) 3-4=0 (mod 12).

In particular, notice that it is possible that the product of two nonzero numbers
modulo 7 can be equivalent to 0 modulo #.

(=]
—
[\S)
w
>
(9]
(o)}
~N

N U W~ O
coococooc oo
N U W~ O
OB N OO N O
RN — W o
P R N N - RN
WO~ RN U O
DR OO N RO
— N WA Uy ©

Table 2.1. Multiplication table for Zg

Example 2. Most, but not all, of the usual laws of arithmetic hold for addition
and multiplication in Z,,. For instance, it is not necessarily true that there is a
multiplicative inverse. Consider the multiplication table for Zg in Table 2.1. Notice
that 2, 4, and 6 do not have multiplicative inverses; that is, for n = 2, 4, or 6, there
is no integer k such that kn =1 (mod 8).

Proposition 2.1. Let Z, be the set of equivalence classes of the integers mod n
and a,b,ce Z,.
1. Addition and multiplication are commutative:

a+b=b+a (modn)
ab=ba (mod n).

2. Addition and multiplication are associative:

(a+b)+c=a+(b+c) (modn)
(ab)c=a(bc) (mod n).
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3. There are both an additive and a multiplicative identity:

a+0=a (mod n)

a-1=a (mod n).
4. Multiplication distributes over addition:
a(b+c)=ab+ac (mod n).
5. For every integer a there is an additive inverse —a:
a+(-a)=0 (mod n).

6. Let a be a nonzero integer. Then gcd(a,n) = 1 if and only if there exists a
multiplicative inverse b for a (mod n); that is, a nonzero integer b such that

ab=1 (mod n).

Proof. We will prove (1) and (6) and leave the remaining properties to be proven
in the exercises.

(1) Addition and multiplication are commutative modulo # since the remain-
der of a + b divided by # is the same as the remainder of b + a divided by .

(6) Suppose that gcd(a, n) = 1. Then there exist integers r and s such that
ar+ns =1 Since ns =1—ar,ra =1 (mod n). Letting b be the equivalence class
of r,ab =1 (mod n).

Conversely, suppose that there exists a b such that ab =1 (mod #). Then n
divides ab -1, so there is an integer k such that ab — nk = 1. Let d = gcd(a, n).
Since d divides ab — nk, d must also divide 1; hence, d = 1. ]

Symmetries
A symmetry of a geometric figure is a rearrangement of the figure preserving
the arrangement of its sides and vertices as well as its distances and angles. A
map from the plane to itself preserving the symmetry of an object is called a
rigid motion. For example, if we look at the rectangle in Figure 2.1, it is easy to
see that a rotation of 180° or 360° returns a rectangle in the plane with the same
orientation as the original rectangle and the same relationship among the vertices.
A reflection of the rectangle across either the vertical axis or the horizontal axis
can also be seen to be a symmetry. However, a 90° rotation in either direction
cannot be a symmetry unless the rectangle is a square.

Let us find the symmetries of the equilateral triangle AABC. To find a symme-
try of A ABC, we must first examine the permutations of the vertices A, B, and C
and then ask if a permutation extends to a symmetry of the triangle. Recall that a
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A B A B
identity
D C D C
A B C D
180°
rotation
D C B A
A B B A
reflection
vertical
D C axis C D
A B D C
reflection
horizontal
D C axis A B

Figure 2.1. Rigid motions of a rectangle

permutation of a set S is a one-to-one and onto map 7 : S — S. The three vertices
have 3! = 6 permutations, so the triangle has at most six symmetries. To see that
there are six permutations, observe there are three different possibilities for the
first vertex, and two for the second, and the remaining vertex is determined by
the placement of the first two. So we have 3-2 -1 = 3! = 6 different arrangements.
To denote the permutation of the vertices of an equilateral triangle that sends A
to B, Bto C, and C to A, we write the array

A B C
(5 ¢ %)
Notice that this particular permutation corresponds to the rigid motion of rotating
the triangle by 120° in a clockwise direction. In fact, every permutation gives rise
to a symmetry of the triangle. All of these symmetries are shown in Figure 2.2.
A natural question to ask is what happens if one motion of the triangle AABC
is followed by another. Which symmetry is yp;; that is, what happens when

we do the permutation p; and then the permutation y;? Remember that we are
composing functions here. Although we usually multiply left to right, we compose
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B B
identity o A B C
"“=\a B C
rotation ) A B C
Pr={B ¢ a
rotation ) A B C
P2=\c A B
reflection (A B C
M=\a ¢ B
reflection (A B C
“=\c B 4
reflection (A B C
b=l 4 ¢

Figure 2.2. Symmetries of a triangle

functions right to left. We have

(up1)(A) = m(p1(A)) = m(B) =C
(t1p1)(B) = i (p1(B)) = i1 (C) = B
(u1p1)(C) = m(p1(C)) = m(A) = A.

This is the same symmetry as p,. Suppose we do these motions in the opposite
order, p; then y;. It is easy to determine that this is the same as the symmetry ps;
hence, p1p11 # p1p1. A multiplication table for the symmetries of an equilateral
triangle A ABC is given in Table 2.2.

Notice that in the multiplication table for the symmetries of an equilateral
triangle, for every motion of the triangle « there is another motion o’ such that
aa’ = id; that is, for every motion there is another motion that takes the triangle
back to its original orientation.
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o |id p1 pr W p2 Y3

id|id p1 pr m U2 W3
pL|pr o p2 o id ops o Y
p2 | p2 id pr 2 ps wm
| o p2 ops id pi po
Y | M2 W3 W p2 id pr
Us | 43 W1 H2  p1 P2 id

Table 2.2. Symmetries of an equilateral triangle

2.2 Definitions and Examples

The integers mod n and the symmetries of a triangle or a rectangle are both
examples of groups. A binary operation or law of composition on a set G is a
function G x G — G that assigns to each pair (a, b) € G a unique element a o b,
or ab in G, called the composition of a and b. A group (G, o) is a set G together
with a law of composition (a, b) — a o b that satisfies the following axioms.

o The law of composition is associative. That is,
(aob)oc=ao(boc)

fora,b,ceG.

o There exists an element e € G, called the identity element, such that for any
elementa € G
eoa=aoe=a.

« For each element a € G, there exists an inverse element in G, denoted by a™*,

such that
aca'=aloa=e.
A group G with the property that ao b = boaforall a,b € G is called abelian or
commutative. Groups not satisfying this property are said to be nonabelian or
noncommutative.

Example 3. The integers Z = {...,-1,0,1,2,...} form a group under the opera-
tion of addition. The binary operation on two integers m, n € Z is just their sum.
Since the integers under addition already have a well-established notation, we will
use the operator + instead of o; that is, we shall write m + n instead of m o n. The
identity is 0, and the inverse of n € Z is written as —n instead of n~!. Notice that
the integers under addition have the additional property that m + n = n + m and
are therefore an abelian group.
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Most of the time we will write ab instead of a o b; however, if the group already
has a natural operation such as addition in the integers, we will use that operation.
That is, if we are adding two integers, we still write m + n, —n for the inverse, and
0 for the identity as usual. We also write m — n instead of m + (-n).

+(0 1 2

W

W= O |

B W= O
B W N = O
S = W N~
— O s W N
o= O W

Table 2.3. Cayley table for (Zs, +)

It is often convenient to describe a group in terms of an addition or multipli-
cation table. Such a table is called a Cayley table.

Example 4. The integers mod # form a group under addition modulo n. Consider
Zs, consisting of the equivalence classes of the integers 0, 1, 2, 3, and 4. We define
the group operation on Zs by modular addition. We write the binary operation
on the group additively; that is, we write m + n. The element 0 is the identity of
the group and each element in Z5 has an inverse. For instance, 2+3=3+2=0.
Table 2.3 is a Cayley table for Zs. By Proposition 2.1, Z, = {0,1,...,n -1} isa
group under the binary operation of addition mod #.

Example 5. Not every set with a binary operation is a group. For example, if we
let modular multiplication be the binary operation on Z,, then Z, fails to be a
group. The element 1 acts as a group identity sincel- k = k-1 =k forany k € Z,,;
however, a multiplicative inverse for 0 does not exist since 0-k = k-0 = 0 for
every k in Z,,. Even if we consider the set Z,, \ {0}, we still may not have a group.
For instance, let 2 € Z¢. Then 2 has no multiplicative inverse since

0-2=0 1-2=2
2:2=4 3.2=0
4.2=2 5.2=4,

By Proposition 2.1, every nonzero k does have an inverse in Z,, if k is relatively
prime to n. Denote the set of all such nonzero elements in Z,, by U(n). Then
U(n) is a group called the group of units of Z,,. Table 2.4 is a Cayley table for the
group U(8).
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Table 2.4. Multiplication table for U(8)

Example 6. The symmetries of an equilateral triangle described in Section 2.1
form a nonabelian group. As we observed, it is not necessarily true that a8 = S«
for two symmetries « and f3. Using Table 2.2, which is a Cayley table for this group,
we can easily check that the symmetries of an equilateral triangle are indeed a
group. We will denote this group by either S; or D3, for reasons that will be
explained later.

Example 7. We use M, (R) to denote the set of all 2 x 2 matrices. Let GL,(R) be
the subset of M), (R) consisting of invertible matrices; that is, a matrix

a b
A =
is in GL,(R) if there exists a matrix A™! such that AA™ = A™'A = [, where I is
the 2 x 2 identity matrix. For A to have an inverse is equivalent to requiring that
the determinant of A be nonzero; that is, det A = ad — bc # 0. The set of invertible

matrices forms a group called the general linear group. The identity of the group
is the identity matrix

The inverse of A € GL,(R) is

Al 1 d -b
ad-bc\ —¢ a
The product of two invertible matrices is again invertible. Matrix multiplication is

associative, satisfying the other group axiom. For matrices it is not true in general
that AB # BA; hence, GL,(R) is another example of a nonabelian group.
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Example 8. Let

where i* = —1. Then the relations I* = J* = K* = -1,I] = K, JK = I, KI = ],
JI = -K, K] = -1, and IK = —] hold. The set Qg = {+1,+I,+],+K} is a group
called the quaternion group. Notice that Qg is noncommutative.

Example 9. Let C* be the set of nonzero complex numbers. Under the operation
of multiplication C* forms a group. The identity is 1. If z = a + bi is a nonzero

complex number, then
1 a-bi
a? +b?
is the inverse of z. It is easy to see that the remaining group axioms hold.

A group is finite, or has finite order, if it contains a finite number of elements;
otherwise, the group is said to be infinite or to have infinite order. The order of a
finite group is the number of elements that it contains. If G is a group containing
n elements, we write |G| = n. The group Zs is a finite group of order 5; the integers
Z form an infinite group under addition, and we sometimes write |Z| = co.

Basic Properties of Groups

Proposition 2.2. The identity element in a group G is unique; that is, there exists
only one element e € G such that eg = ge = g forall g € G.

Proof. Suppose that e and e’ are both identities in G. Then eg = ge = g and
e'g=ge' = gforall g € G. We need to show that e = ¢’. If we think of e as the
identity, then ee’ = e’; but if e’ is the identity, then ee’ = e. Combining these two
equations, we have e = ee’ = ¢’. ]

Inverses in a group are also unique. If g’ and g” are both inverses of an element
ginagroup G, then gg’ = g'g = e and gg" = g"'g = e. We want to show that
g =g".butg =g'e=4g'(99")=(9'9)g" = eg” = g"". We summarize this fact
in the following proposition.

Proposition 2.3. If g is any element in a group G, then the inverse of g, g%, is
unique.

Proposition 2.4. Let G be a group. If a,b € G, then (ab)™ =b'a™".

Proof. Leta,b e G. Then abb™'a™ = aea™ = aa™ = e. Similarly, b'a™'ab = e.
But by the previous proposition, inverses are unique; hence, (ab)™ =b7'a”!. =
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Proposition 2.5. Let G be a group. Foranya € G, (a™')™! = a.

Proof. Observe that a™'(a™*)™! = e. Consequently, multiplying both sides of this
equation by a, we have

(a7 '=e(@) ' =aa(a ) =ae=a. -

It makes sense to write equations with group elements and group operations.
If a and b are two elements in a group G, does there exist an element x € G such
that ax = b? If such an x does exist, is it unique? The following proposition
answers both of these questions positively.

Proposition 2.6. Let G be a group and a and b be any two elements in G. Then
the equations ax = b and xa = b have unique solutions in G.

Proof. Suppose that ax = b. We must show that such an x exists. Multiplying
both sides of ax = b by a™!, we have x = ex = a'ax = a™'b.

To show uniqueness, suppose that x; and x, are both solutions of ax = b; then
ax; = b =ax,. Sox; = alax; = alax, = x,. The proof for the existence and
uniqueness of the solution of xa = b is similar. ]

Proposition 2.7. If G is a group and a, b, ¢ € G, then ba = ca implies b = ¢ and
ab = ac implies b = c.

This proposition tells us that the right and left cancellation laws are true in
groups. We leave the proof as an exercise.
We can use exponential notation for groups just as we do in ordinary algebra.
If G is a group and g € G, then we define g° = e. For n € N, we define
9"=9-99
—
n times

and
g" = g—l . g—l.“g—l.
——
n times

Theorem 2.8. In a group, the usual laws of exponents hold; that is, forall g, h € G,
1. g"g"=g"*" forallm,n € Z;
2. (g™)" =g™" forallm,n e Z;

3. (gh)" = (h™'g™")™" for all n € Z. Furthermore, if G is abelian, then (gh)" =
g'h".
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We will leave the proof of this theorem as an exercise. Notice that (gh)" #
g"h" in general, since the group may not be abelian. If the group is Z or Z,,, we
write the group operation additively and the exponential operation multiplica-
tively; that is, we write ng instead of g”. The laws of exponents now become

1. mg+ng=(m+n)gforalm,neZ;
2. m(ng) = (mn)gforallm,n ez,
3. m(g+h)=mg+mhforalneZ.

It is important to realize that the last statement can be made only because Z and
Z, are commutative groups.

Historical Note

Although the first clear axiomatic definition of a group was not given until the late 1800s,
group-theoretic methods had been employed before this time in the development of many
areas of mathematics, including geometry and the theory of algebraic equations.

Joseph-Louis Lagrange used group-theoretic methods in a 1770-1771 memoir to study
methods of solving polynomial equations. Later, Evariste Galois (1811-1832) succeeded in
developing the mathematics necessary to determine exactly which polynomial equations
could be solved in terms of the polynomials’ coefficients. Galois’ primary tool was group
theory.

The study of geometry was revolutionized in 1872 when Felix Klein proposed that
geometric spaces should be studied by examining those properties that are invariant under
a transformation of the space. Sophus Lie, a contemporary of Klein, used group theory
to study solutions of partial differential equations. One of the first modern treatments of
group theory appeared in William Burnside’s The Theory of Groups of Finite Order [1], first
published in 1897.

2.3 Subgroups

Definitions and Examples

Sometimes we wish to investigate smaller groups sitting inside a larger group. The
set of even integers 2Z = {...,-2,0,2,4, ...} is a group under the operation of
addition. This smaller group sits naturally inside of the group of integers under
addition. We define a subgroup H of a group G to be a subset H of G such that
when the group operation of G is restricted to H, H is a group in its own right.
Observe that every group G with at least two elements will always have at least two
subgroups, the subgroup consisting of the identity element alone and the entire
group itself. The subgroup H = {e} of a group G is called the trivial subgroup. A
subgroup that is a proper subset of G is called a proper subgroup. In many of the
examples that we have investigated up to this point, there exist other subgroups
besides the trivial and improper subgroups.
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Example 10. Consider the set of nonzero real numbers, R*, with the group op-
eration of multiplication. The identity of this group is 1 and the inverse of any
element a € R* is just 1/a. We will show that

Q" ={p/q: pand qare nonzero integers}

is a subgroup of R*. The identity of R* is 1; however, 1 = 1/1 is the quotient of
two nonzero integers. Hence, the identity of R* is in Q*. Given two elements
in Q*, say p/q and r/s, their product pr/gs is also in Q*. The inverse of any
element p/q € Q* is again in Q" since (p/q)~! = q/p. Since multiplication in R*
is associative, multiplication in Q* is associative.

Example 11. Recall that C* is the multiplicative group of nonzero complex num-
bers. Let H = {1,-1,i,—i}. Then H is a subgroup of C*. It is quite easy to verify
that H is a group under multiplication and that H c C*.

Example 12. Let SL,(R) be the subset of GL,(R) consisting of matrices of deter-
minant one; that is, a matrix
a b
A=

isin SL,(R) exactly when ad — bc = 1. To show that SL,(IR) is a subgroup of the
general linear group, we must show that it is a group under matrix multiplication.
The 2 x 2 identity matrix is in SL,(R), as is the inverse of the matrix A:

4 b
N\ -¢c a |

It remains to show that multiplication is closed; that is, that the product of two
matrices of determinant one also has determinant one. We will leave this task as
an exercise. The group SL,(R) is called the special linear group.

Example 13. It is important to realize that a subset H of a group G can be a group
without being a subgroup of G. For H to be a subgroup of G it must inherit G’s
binary operation. The set of all 2 x 2 matrices, M, (R), forms a group under the
operation of addition. The 2 x 2 general linear group is a subset of M, (R) and is
a group under matrix multiplication, but it is not a subgroup of M (R). If we add
two invertible matrices, we do not necessarily obtain another invertible matrix.

Observe that
Loy (-1 o) (oo
0 1 o -1 ) Lo o)

but the zero matrix is not in GL,(R).
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Example 14. One way of telling whether or not two groups are the same is by
examining their subgroups. Other than the trivial subgroup and the group itself,
the group Z,4 has a single subgroup consisting of the elements 0 and 2. From
the group Z,, we can form another group of four elements as follows. As a set
this group is Z, x Z,. We perform the group operation coordinatewise; that is,
(a,b) + (c,d) = (a+c,b+d). Table 2.5 is an addition table for Z, x Z,. Since
there are three nontrivial proper subgroups of Z, x Z,, H; = {(0,0),(0,1)},
H, ={(0,0),(1,0)},and H; = {(0,0),(1,1)}, Z4 and Z, x Z, must be different
groups.

+ ‘(0,0) (0,1)  (1,0) (1,1)

(0,0) | (0,0) (0,1) (1,0) (L,1)
(0,1) | (0,1) (0,0) (L1) (1,0)
(L,o) | (1,0) (1,1) (0,0) (0,1)
(L1 | L,y (,0) (0,1) (0,0)

Table 2.5. Addition table for Z, x Z,

Some Subgroup Theorems

Let us examine some criteria for determining exactly when a subset of a group is
a subgroup.

Proposition 2.9. A subset H of G is a subgroup if and only if it satisfies the
following conditions.

1. The identity e of G is in H.

2. If hy, hy € H, then hih; € H.

3. IfheH, then h™ € H.

Proof. First suppose that H is a subgroup of G. We must show that the three
conditions hold. Since H is a group, it must have an identity ey. We must show
that ey = e, where e is the identity of G. We know that egey = ey and that
eey = ege = ey; hence, eey = eyey. By right-hand cancellation, e = ey. The
second condition holds since a subgroup H is a group. To prove the third condition,
let h € H. Since H is a group, there is an element h’ € H such that hh' = h'h = e.
By the uniqueness of the inverse in G, b’ = h™".

Conversely, if the three conditions hold, we must show that H is a group under
the same operation as G; however, these conditions plus the associativity of the
binary operation are exactly the axioms stated in the definition of a group. m

Proposition 2.10. Let H be a subset of a group G. Then H is a subgroup of G if
and only if H # @, and whenever g, h € H then gh™" is in H.
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Proof. Let H be a nonempty subset of G. Then H contains some element g. So
gg ' =eisin H.If g€ H,then eg™' = g ' is also in H. Finally, let g, h € H. We
must show that their product is also in H. However, g(h™')™' = gh € H. Hence,
H is indeed a subgroup of G. Conversely, if g and h are in H, we want to show
that gh™! € H. Since h is in H, its inverse k™! must also be in H. Because of the
closure of the group operation, gh™ € H. ]

Exercises

1. Find all x € Z satisfying each of the following equations.

(a) 3x =2 (mod 7) (d) 9x =3 (mod 5)
(b) 5x+1=13 (mod 23) (e) 5x=1 (mod 6)
(c) 5x+1=13 (mod 26) (f) 3x =1 (mod 6)

2. Which of the following multiplication tables defined on the set G = {a, b, c,d} form a
group? Support your answer in each case.

(a) ola b ¢ d (b) ola b ¢ d
ala ¢ d a ala b ¢ d
b|b b ¢ d b|b a d c
clc d a b clc d a b
d|ld a b ¢ d|ld ¢ b a
(C) (o} a b [ d (d) (o} a b Cc d
ala b ¢ d ala b ¢ d
blb ¢ d a blb a ¢ d
clc d a b clc b a d
d|d a b ¢ d|d d b ¢

3. Write out Cayley tables for groups formed by the symmetries of a rectangle and for
(Z4, +). How many elements are in each group? Are the groups the same? Why or why
not?

4. Describe the symmetries of a rhombus and prove that the set of symmetries forms a
group. Give Cayley tables for both the symmetries of a rectangle and the symmetries of
arhombus. Are the symmetries of a rectangle and those of a rhombus the same?

5. Describe the symmetries of a square and prove that the set of symmetries is a group.
Give a Cayley table for the symmetries. How many ways can the vertices of a square be
permuted? Is each permutation necessarily a symmetry of the square? The symmetry
group of the square is denoted by Ds.

6. Give a multiplication table for the group U(12).

7. Let § = R\ {-1} and define a binary operation on Sby a * b = a + b + ab. Prove that
(S, *) is an abelian group.

8. Give an example of two elements A and B in GL,(R) with AB + BA.

9. Prove that the product of two matrices in SL»(R) has determinant one.
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10. Prove that the set of matrices of the form

1
0
0

o = R

Y
z
1

is a group under matrix multiplication. This group, known as the Heisenberg group, is
important in quantum physics. Matrix multiplication in the Heisenberg group is defined

by

1 x y 1 Xy 1 x+x" y+y +x2
0 1 z 0 1 2 |=fo0o 1 z+72'
0 0 1 0 0 1 0 0 1

11. Prove that det(AB) = det(A) det(B) in GL;(R). Use this result to show that the
binary operation in the group GL,(R) is closed; that is, if A and B are in GL,(R), then
AB € GLy(R).

12. LetZ5 = {(a1,a2,...,ax) : ai € Z,}. Define a binary operation on Zj by

(a1, a2,...,an) + (b1, ba,...,by) = (a1 + br,a2 + by, ..., an + by).

Prove that Z3 is a group under this operation. This group is important in algebraic
coding theory.

13. Show that R* = R\ {0} is a group under the operation of multiplication.

14. Given the groups R* and Z, let G = R* x Z. Define a binary operation o on G by
(a,m) o (b,n) = (ab, m + n). Show that G is a group under this operation.

15. Prove or disprove that every group containing six elements is abelian.
16. Give a specific example of some group G and elements g, h € G where (gh)" + g"h".

17. Give an example of three different groups with eight elements. Why are the groups
different?

18. Show that there are n! permutations of a set containing # items.

19. Show that
0O+a=a+0=a (modn)

foralla e Z,.

20. Prove that there is a multiplicative identity for the integers modulo #:
a-1=a (mod n).
21. ForeachaeZ, finda b € Z, such that
a+b=b+a=0 (modn).

22. Show that addition and multiplication mod # are associative operations.

23. Show that multiplication distributes over addition modulo n:

a(b+c¢)=ab+ac (mod n).
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24. Let a and b be elements in a group G. Prove that ab”a™" = (aba™)".

25. Let U(n) be the group of units in Z,. If n > 2, prove that there is an element k € U(n)
such that k* = 1and k # 1.

26. Prove that the inverse of gig-gn is 95" gpl1- g1 -

27. Prove Proposition 2.6: if G is a group and a, b € G, then the equations ax = b and
xa = b have unique solutions in G.

28. Prove the right and left cancellation laws for a group G; that is, show that in the group
G, ba = ca implies b = ¢ and ab = ac implies b = c for elements a, b, c € G.

29. Show that if a* = e for all a € G, then G must be an abelian group.

30. Show that if G is a finite group of even order, then there is an a € G such that a is not
the identity and a” = e.

31. Let G be a group and suppose that (ab)* = a*b* for all @ and b in G. Prove that G is
an abelian group.

32. Find all the subgroups of Z; x Z3. Use this information to show that Z; x Z; is not
the same group as Zo.

33. Find all the subgroups of the symmetry group of an equilateral triangle.
34. Compute the subgroups of the symmetry group of a square.
35. Let H = {2* : k € Z}. Show that H is a subgroup of Q*.

36. Letn=0,1,2,...and nZ = {nk : k € Z}. Prove that nZ is a subgroup of Z. Show that
these subgroups are the only subgroups of Z.

37. Let T = {z e C" : || = 1}. Prove that T is a subgroup of C*.
38. Let G consist of the 2 x 2 matrices of the form

cosf —sinf
sin 6 cos @
where 0 € R. Prove that G is a subgroup of SL,(IR).
39. Prove that

G ={a+bV2:a,beQand aand b are not both zero}

is a subgroup of R* under the group operation of multiplication.

40. Let G be the group of 2 x 2 matrices under addition and

ez 5o

Prove that H is a subgroup of G.

41. Proveordisprove: SL,(Z), the set of 2x2 matrices with integer entries and determinant
one, is a subgroup of SL>(R).

42. List the subgroups of the quaternion group, Qs.

43. Prove that the intersection of two subgroups of a group G is also a subgroup of G.
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44. Prove or disprove: If H and K are subgroups of a group G, then H U K is a subgroup
of G.

45. Prove or disprove: If H and K are subgroups of a group G, then
HK ={hk:heHand k € K}

is a subgroup of G. What if G is abelian?
46. Let G be a group and g € G. Show that

Z(G)={xeG:gx=xgforallge G}

is a subgroup of G. This subgroup is called the center of G.
47. Let a and b be elements of a group G. If a*b = ba and a® = e, prove that ab = ba.
48. Give an example of an infinite group in which every nontrivial subgroup is infinite.
49. Give an example of an infinite group in which every proper subgroup is finite.
50. If xy = x'y™" for all x and y in G, prove that G must be abelian.
51. If (xy)® = xy for all x and y in G, prove that G must be abelian.
52. Prove or disprove: Every nontrivial subgroup of an nonabelian group is nonabelian.

53. Let H be a subgroup of G and
N(H)={geG:gh=hgforallheH}.
Prove N(H) is a subgroup of G. This subgroup is called the normalizer of H in G.

Additional Exercises: Detecting Errors

Credit card companies, banks, book publishers, and supermarkets all take advantage of

the properties of integer arithmetic modulo # and group theory to obtain error detection

schemes for the identification codes that they use.

1. upc Symbols. Universal Product Code (upc) symbols are now found on most products
in grocery and retail stores. The upc symbol is a 12-digit code identifying the man-
ufacturer of a product and the product itself (Figure 2.3). The first 11 digits contain
information about the product; the twelfth digit is used for error detection. If d\d>---d1,
is a valid upc number, then

3'd1+1'd2+3'd3+'“+3'd11+1~d12EO (mole)

(a) Show that the upc number 0-50000-30042-6, which appears in Figure 2.3, is a valid
uUPC number.

(b) Show that the number 0-50000-30043-6 is not a valid upc number.
(c) Write a formula to calculate the check digit, di», in the upc number.

(d) The upc error detection scheme can detect most transposition errors; that is, it can
determine if two digits have been interchanged. Show that the transposition error
0-05000-30042-6 is detected. Find a transposition error that is not detected.

(e) Write a program that will determine whether or not a upc number is valid.
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0 50000"™ 30042" Ve

Figure 2.3. A uPC code

It is often useful to use an inner product notation for this type of error detection scheme;
hence, we will use the notion

(di,day...,di) - (Wi, wa,...,wk) =0 (mod n)
to mean
d1W1 + dez + e+ dkwk =0 (mod I’l).

Suppose that (di,da,...,dx) - (wi,wa,...,wx) = 0 (mod n) is an error detection
scheme for the k-digit identification number dd,---di, where 0 < d; < n. Prove that all
single-digit errors are detected if and only if gcd(wi, n) =1for1<i <k.

. Let(di,dz,...,dy)-(wi,w2,...,wr) =0 (mod n) bean error detection scheme for the

k-digit identification number did,---dy, where 0 < d; < n. Prove that all transposition
errors of two digits d; and d; are detected if and only if ged(w; — wj, n) = 1for i and j
between 1 and k.

. 1sBN Codes. Every book has an International Standard Book Number (1sBN) code. This

is a 10-digit code indicating the booK’s publisher and title. The tenth digit is a check digit
satisfying
(dl, dz, ey le) . (10, 9, . ,1) =0 (mod H)

One problem is that dip might have to be a 10 to make the inner product zero; in this

case, 11 digits would be needed to make this scheme work. Therefore, the character X is

used for the eleventh digit. So 1SBN 3-540-96035-X is a valid 1sBN code.

(a) Is1sBN 0-534-91500-0 a valid 1sBN code? What about 1sBN 0-534-91700-0 and 1SBN
0-534-19500-0?

(b) Does this method detect all single-digit errors? What about all transposition errors?

(c) How many different 1sBN codes are there?

(d) Write a computer program that will calculate the check digit for the first nine digits
of an 1sBN code.

(e) A publisher has houses in Germany and the United States. Its German prefix is
3-540. If its United States prefix will be 0-abc, find abc such that the rest of the 1sBN
code will be the same for a book printed in Germany and in the United States. Under
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the 1sBN coding method the first digit identifies the language; German is 3 and English
is 0. The next group of numbers identifies the publisher, and the last group identifies
the specific book.
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Cyclic Groups

he groups Z and Z,, which are among the most familiar and easily under-

stood groups, are both examples of what are called cyclic groups. In this

chapter we will study the properties of cyclic groups and cyclic subgroups, which
play a fundamental part in the classification of all abelian groups.

3.1 Cyclic Subgroups

Often a subgroup will depend entirely on a single element of the group; that is,
knowing that particular element will allow us to compute any other element in
the subgroup.

Example 1. Suppose that we consider 3 € Z and look at all multiples (both positive
and negative) of 3. As a set, this is

32=1{...,-3,0,3,6,...}.

It is easy to see that 3Z is a subgroup of the integers. This subgroup is completely
determined by the element 3 since we can obtain all of the other elements of the
group by taking multiples of 3. Every element in the subgroup is “generated” by 3.

Example 2. If H = {2" : n € Z}, then H is a subgroup of the multiplicative
group of nonzero rational numbers, Q*. If a = 2™ and b = 2" are in H, then
ab™' = 2M27" = 2™"" js also in H. By Proposition 2.10, H is a subgroup of Q*
determined by the element 2.

Theorem 3.1. Let G be a group and a be any element in G. Then the set
(a)={a*:kez}

is a subgroup of G. Furthermore, {a) is the smallest subgroup of G that contains a.

Proof. The identity is in (a) since a® = e. If g and h are any two elements in (a),

then by the definition of (a) we can write g = a™ and h = a” for some integers m
and n. So gh = a™a" = a™*" is again in (a). Finally, if g = a” in (a), then the
inverse g~ = a" is also in (a). Clearly, any subgroup H of G containing a must
contain all the powers of a by closure; hence, H contains (a). Therefore, (a) is
the smallest subgroup of G containing a. ]
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Remark. If we are using the “+” notation, as in the case of the integers under
addition, we write (a) = {na:n € Z}.

For a € G, we call (a) the cyclic subgroup generated by a. If G contains some
element a such that G = (a), then G is a cyclic group. In this case a is a generator
of G. If a is an element of a group G, we define the order of a to be the smallest
positive integer # such that a” = e, and we write |a| = n. If there is no such integer
n, we say that the order of a is infinite and write |a| = co to denote the order of a.

Example 3. Notice that a cyclic group can have more than a single generator.
Both 1and 5 generate Z¢; hence, Z; is a cyclic group. Not every element in a cyclic
group is necessarily a generator of the group. The order of 2 € Z; is 3. The cyclic
subgroup generated by 2 is (2) = {0,2,4}.

The groups Z and Z,, are cyclic groups. The elements 1 and -1 are generators
for Z. We can certainly generate Z,, with 1 although there may be other generators
of Z,, as in the case of Z;.

Example 4. The group of units, U(9), in Z, is a cyclic group. As a set, U(9) is
{1,2,4,5,7,8}. The element 2 is a generator for U(9) since

=2 2%2=
2=8 2t=7
2’=5 20=1.

Example 5. Not every group is a cyclic group. Consider the symmetry group of
an equilateral triangle S;. The multiplication table for this group is Table 2.2. The
subgroups of S; are shown in Figure 3.1. Notice that every subgroup is cyclic;
however, no single element generates the entire group.

//\\

{id. p1.p2} {id, 1} {id, >} {id, s}

\\ld}//

Figure 3.1. Subgroups of S;
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Theorem 3.2. Every cyclic group is abelian.

Proof. Let G be a cyclic group and a € G be a generator for G. If g and h are in G,
then they can be written as powers of g, say g = a” and h = a°. Since

gh:al’aS:aT+S:aS+T:a5ar:hg’
G is abelian. n

Subgroups of Cyclic Groups

We can ask some interesting questions about cyclic subgroups of a group and
subgroups of a cyclic group. If G is a group, which subgroups of G are cyclic? If G
is a cyclic group, what type of subgroups does G possess?

Theorem 3.3. Every subgroup of a cyclic group is cyclic.

Proof. The main tools used in this proof are the division algorithm and the Princi-
ple of Well-Ordering. Let G be a cyclic group generated by a and suppose that H
is a subgroup of G. If H = {e}, then trivially H is cyclic. Suppose that H contains
some other element g distinct from the identity. Then g can be written as a” for
some integer n. We can assume that #n > 0. Let m be the smallest natural number
such that a™ € H. Such an m exists by the Principle of Well-Ordering.

We claim that h = a™ is a generator for H. We must show that every h’ ¢ H
can be written as a power of h. Since h’ € H and H is a subgroup of G, h’ = a* for
some positive integer k. Using the division algorithm, we can find numbers g and
r such that k = mq + r where 0 < r < m; hence,

ak _ amq+r _ (aM)qar =hig".

So a” = a*¥h™1. Since a* and h™9 are in H, a” must also be in H. However, m was
the smallest positive number such that a™ was in H; consequently, r = 0 and so
k = mgq. Therefore,

h' =ak=qm =pl

and H is generated by h. ]

Corollary 3.4. The subgroups of Z are exactly nZ for n = 0,1,2, . ...

Proposition 3.5. Let G be a cyclic group of order n and suppose that a is a gener-
ator for G. Then a* = e if and only if # divides k.

Proof. First suppose that a* = e. By the division algorithm, k = nq + r where

0 < r < n; hence,

k nq+r

e=a"=a =a"a" =ea" =a".
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Since the smallest positive integer m such that a™ = e is n, r = 0. Conversely, if n
divides k, then k = ns for some integer s. Consequently,

ak=a™=(a") =¢ =e. ]

Theorem 3.6. Let G be a cyclic group of order n and suppose that a € G is a
generator of the group. If b = a*, then the order of b is n/d, where d = gcd(k, n).

Proof. We wish to find the smallest integer m such that e = b™ = a*™. By Propo-
sition 3.5, this is the smallest integer m such that » divides km or, equivalently,
n/d divides m(k/d). Since d is the greatest common divisor of n and k, n/d and
k/d are relatively prime. Hence, for n/d to divide m(k/d) it must divide m. The
smallest such m is n/d. ]

Corollary 3.7. The generators of Z, are the integers r such that1 < r < n and
ged(r,n) =1

Example 6. Let us examine the group Z;6. The numbers 1, 3, 5,7, 9, 11, 13, and
15 are the elements of Z;4 that are relatively prime to 16. Each of these elements
generates Z,¢. For example,

1-9=9 2:9=2 3-9=11
4-9=4 5-9=13 6-9=6
7-9=15 8§:9=8 9-9=1
10-9=10 1-9=3 12-9=12
13-9=5 14-9=14 15-9=7.

3.2 The Group C*
The complex numbers are defined as

C={a+bi:a,beR},

where i* = —1. If z = a + bi, then a is the real part of z and b is the imaginary part
of z.

To add two complex numbers z = a + bi and w = ¢ + di, we just add the
corresponding real and imaginary parts:

z+w=(a+bi)+(c+di)=(a+c)+(b+d)i.

Remembering that i* = -1, we multiply complex numbers just like polynomials.
The product of z and w is

(a+0bi)(c+di)=ac+bdi*+adi+bci=(ac-bd) + (ad + be)i.
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23=-3+2i

. zz=l—2i

Figure 3.2. Rectangular coordinates of a complex number

Every nonzero complex number z = a + bi has a multiplicative inverse; that
is, there exists a z™' € C* such that zz™' = z7'z = 1. If z = a + bi, then

4 a-bi

a*+b?

The complex conjugate of a complex number z = a + bi is defined tobe z = a — bi.
The absolute value or modulus of z = a + bi is || = vV a? + b2,

Example 7. Letz =2+ 3iand w =1-2i. Then

z+w=(2+3i)+(1-2i)=3+1i

and
zw=(2+3i)(1-2i) =8 1.
Also,
-1 _ 3 _ ii
1313
|| = V13
z=2-73i.

There are several ways of graphically representing complex numbers. We can
represent a complex number z = a + bi as an ordered pair on the x y plane where a
is the x (or real) coordinate and b is the y (or imaginary) coordinate. This is called
the rectangular or Cartesian representation. The rectangular representations of
z1 =2+ 3i,z, =1-2i,and z3 = -3 + 2i are depicted in Figure 3.2.

Nonzero complex numbers can also be represented using polar coordinates.
To specify any nonzero point on the plane, it suffices to give an angle 6 from the
positive x axis in the counterclockwise direction and a distance r from the origin,
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a+ bi

\6

Figure 3.3. Polar coordinates of a complex number

as in Figure 3.3. We can see that

z=a+bi=r(cosf+isinb).

Hence,
r=lz| =Va?+0b?
and
a=rcosf
b=rsinf.

We sometimes abbreviate r(cos 6 + i sin 8) as rcis 0. To assure that the represen-
tation of z is well-defined, we also require that 0° < 6 < 360°. If the measurement
is in radians, then 0 < 6 < 27.

Example 8. Suppose that z = 2¢is60°. Then
a=2cos60° =1

and
b =2sin60° = /3.

Hence, the rectangular representation is z = 1+ /3 i.
Conversely, if we are given a rectangular representation of a complex number,
it is often useful to know the number’s polar representation. If z = 3V2-3V2i,

then
r=vVa2+b2=36=6

and b
0 = arctan (7) = arctan(-1) = 315°,
a

$03v/2 = 3v/2i = 6.¢is 315°.
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The polar representation of a complex number makes it easy to find prod-
ucts and powers of complex numbers. The proof of the following proposition is
straightforward and is left as an exercise.

Proposition 3.8. Let z = rcis 0 and w = s cis ¢ be two nonzero complex numbers.
Then
zw = rscis(6 + ¢).

Example 9. If z = 3cis(r/3) and w = 2cis(7/6), then zw = 6 cis(7/2) = 6i.

Theorem 3.9 (DeMoivre). Let z = rcis 0 be a nonzero complex number. Then
[rcis0]" = r" cis(n0)
forn=12,....

Proof. We will use induction on n. For n = 1 the theorem is trivial. Assume that
the theorem is true for all k such that 1 < k < n. Then

gy
=r"(cosnf +isinnf)r(cos 6 + isinH)
= r""[(cos n cos @ — sin nO sin B) + i(sin n6 cos @ + cos nf sin H)]
= r""[cos(n0 + 0) + isin(nf + 0)]
= r"[cos(n +1)8 + isin(n +1)0)]. ]
Example 10. Suppose that z = 1 + i and we wish to compute z'°. Rather than

computing (1+ i)' directly, it is much easier to switch to polar coordinates and
calculate z'° using DeMoivre’s Theorem:

2= (1+i)"°
- (vaas (7))
- vy (%)
= 32cis(g)
= 32i.

The Circle Group and the Roots of Unity

The multiplicative group of the complex numbers, C*, possesses some interesting
subgroups. Whereas Q* and R* have no interesting subgroups of finite order, C*
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has many. We first consider the circle group,
T={zeC:|z]=1}.

The following proposition is a direct result of Proposition 3.8.
Proposition 3.10. The circle group is a subgroup of C*.

Although the circle group has infinite order, it has many interesting finite
subgroups. Suppose that H = {1,-1,i,—i}. Then H is a subgroup of the circle
group. Also, 1, -1, i, and —i are exactly those complex numbers that satisfy the
equation z* = 1. The complex numbers satisfying the equation z” = 1 are called
the nth roots of unity.

Theorem 3.11. If z" =1, then the nth roots of unity are

. (Zkﬂ)
z=cis[—),

n

where k = 0,1,...,n — 1. Furthermore, the nth roots of unity form a cyclic
subgroup of T of order n.

Proof. By DeMoivre’s Theorem,
2kn
z" =cis (n—) = cis(2kn) = 1.
n

The 2’s are distinct since the numbers 2k7/n are all distinct and are greater than
or equal to 0 but less than 271. The fact that these are all of the roots of the equation
z" =1follows from the Fundamental Theorem of Algebra (Theorem 19.16), which
states that a polynomial of degree n can have at most n roots. We will leave the
proof that the nth roots of unity form a cyclic subgroup of T as an exercise. m

A generator for the group of the nth roots of unity is called a primitive nth
root of unity.

Example 11. The 8th roots of unity can be represented as eight equally spaced
points on the unit circle (Figure 3.4). The primitive 8th roots of unity are

V2 V2. s V2 V2,
w=—+—1I, ==+ —i,

w =
2 2 2 2

S VI VI o VA VA

>

w’ =
2 2 2 2
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g
g

Figure 3.4. 8th roots of unity

3.3 The Method of Repeated Squares'

Computing large powers can be very time-consuming. Just as anyone can compute
22 or 28, everyone knows how to compute

1000000
2

However, such numbers are so large that we do not want to attempt the calculations;
moreover, past a certain point the computations would not be feasible even if
we had every computer in the world at our disposal. Even writing down the
decimal representation of a very large number may not be reasonable. It could
be thousands or even millions of digits long. However, if we could compute
something like 27398332 (mod 46389), we could very easily write the result down
since it would be a number between 0 and 46, 388. If we want to compute powers
modulo #n quickly and efficiently, we will have to be clever.

The first thing to notice is that any number a can be written as the sum of
distinct powers of 2; that is, we can write

a=2M 42k 4y 0k

where k; < k; < - < k. This is just the binary representation of a. For example,
the binary representation of 57 is 111001, since we can write 57 = 2° + 23 + 2% + 23,
The laws of exponents still work in Z,; that is, if b = a* (mod n) and ¢ =

a’ (mod n), then bc = a**” (mod n). We can compute a? (mod n) in k

"The results in this section are needed only in Chapter 6.
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multiplications by computing

a*  (mod n)

a? (mod n)

a®* (mod n).

Each step involves squaring the answer obtained in the previous step, dividing by
n, and taking the remainder.

Example 12. We will compute 271°*! (mod 481). Notice that
321=2%+2°+ 2%
hence, computing 271**' (mod 481) is the same as computing
2712+2%42° 2 9717 . 271%° 271" (mod 481).

So it will suffice to compute 2717 (mod 481) where i = 0,6, 8. It is very easy to
see that .
271* =73,441 (mod 481)

=329 (mod 481).

We can square this result to obtain a value for 2712 (mod 481):

271 = (271%)*  (mod 481)
= (329)* (mod 481)
=1,082,411 (mod 481)
=16 (mod 481).

We are using the fact that (a?")? = a*?" = a?" (mod n). Continuing, we can
calculate )

2717 =419 (mod 481)
and

271 =16 (mod 481).
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Therefore,
0 6 8
27177 = 2712 72 %2 (mod 481)
=271 2717 1271 (mod 481)
=271-419-16 (mod 481)
=1,816,784 (mod 481)
=47 (mod 481).
The method of repeated squares will prove to be a very useful tool when we
explore Rsa cryptography in Chapter 6. To encode and decode messages in a

reasonable manner under this scheme, it is necessary to be able to quickly compute
large powers of integers mod n.

Exercises

1. Prove or disprove each of the following statements.
(a) U(8) is cyclic.
(b) All of the generators of Z are prime.
(c) Qiscyclic.
(d) If every subgroup of a group G is cyclic, then G is a cyclic group.
(e) A group with a finite number of subgroups is finite.

2. Find the order of each of the following elements.

(a) 5e¢Zn (b) \/§ cR
() V3eR* (d) -ieC”
(e) 72 in 2240 (f) 312 in 2471

3. List all of the elements in each of the following subgroups.
(a) The subgroup of Z generated by 7
(b) The subgroup of Z,4 generated by 15
(c) All subgroups of Z;,
(d) All subgroups of Zso
(e) All subgroups of Z;3
(f) All subgroups of Z4s
(g) The subgroup generated by 3 in U(20)
(h) The subgroup generated by 6 in U(18)
(i) The subgroup of R* generated by 7
(j) The subgroup of C* generated by i where i* = -1
(k) The subgroup of C* generated by 2i
(1) The subgroup of C* generated by (1+i)/v/2
(m) The subgroup of C* generated by (1+/31)/2
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4. Find the subgroups of GL,(R) generated by each of the following matrices.
(a) ( 0 1 ) (b) ( 0 13 )
-1 0 3.0
© ( 11 ) ) ( 1 -1 )
1 0 0 1
(e) ( -l ) (f) V32 12
-1 0 -1/2 V3/2

. Find the order of every element in Z;s.

. Find the order of every element in the symmetry group of the square, Ds.

5
6
7. What are all of the cyclic subgroups of the quaternion group, Qs?
8. List all of the cyclic subgroups of U(30).
9. List every generator of each subgroup of order 8 in Z3,.
10. Find all elements of finite order in each of the following groups.
(a) Z
(b) Q*
(0 R
11. If a** = e in a group G, what are the possible orders of a?

12. Find a cyclic group with exactly one generator. Can you find cyclic groups with exactly
two generators? Four generators? How about n generators?

13. For n < 20, which groups U(n) are cyclic? Make a conjecture as to what is true in
general. Can you prove your conjecture?

(1)
()

be elements in GL,(R). Show that A and B have finite orders but AB does not.
15. Evaluate each of the following.

14. Let

and

@) (3-2i)+(5i-6) (b) (4-5i)— (4i-4)
() (5—4i)(7+2i) (d (9-9i)(9-1)
(o) i (0 (1+i)+(1+1)
16. Convert the following complex numbers to the form a + bi.
(a) 2cis(m/6) (b) 5cis(97/4)
(c) 3cis(m) (d) cis(7n/4)/2
17. Change the following complex numbers to polar representation.
(@) 1-i (b) -5
(c) 2+2i (d) V3+i

(e) -3i (f) 2i +2/3
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18. Calculate each of the following expressions.
a) (1+i)" (b) (1-4)°
) (V3+i) @ (-i)"
() ((1-1)/2)" ) (-vV2-v2i)"

) (=2+2i)7°
19. Prove each of the following statements.
@) || = [2] (b) 2z = |2
() z7' =z/|z (d) |z+w|<|z] + |w|
e) [z —w|2|lz[ - |wll (6) [zw] = [zl[w|

20. List and graph the 6th roots of unity. What are the generators of this group? What are
the primitive 6th roots of unity?

21. List and graph the 5th roots of unity. What are the generators of this group? What are
the primitive sth roots of unity?

22. Calculate each of the following.
(a) 292" (mod 582) (b) 2557°* (mod 5681)

(c) 2071%* (mod 4724) (d) 971°*" (mod 765)
23. Leta, b € G. Prove the following statements.
(a) The order of a is the same as the order of a™*
(b) ForallgeG,|a|=|g " agl.
(c) The order of ab is the same as the order of ba.
24. Let p and q be distinct primes. How many generators does Z,4 have?
25. Let p be prime and r be a positive integer. How many generators does Z - have?
26. Prove that Z, has no nontrivial subgroups if p is prime.
27. If gand h have orders 15 and 16 respectively in a group G, what is the order of (g) N (h)?
28. Let a be an element in a group G. What is a generator for the subgroup (a™) n (a")?
29. Prove that Z,, has an even number of generators for n > 2.
30. Suppose that G is a group and let 4, b € G. Prove that if [a| = m and |b| = n with
ged(m, n) =1, then (a) n (b) = {e}.
31. Let G be an abelian group. Show that the elements of finite order in G form a subgroup.
This subgroup is called the torsion subgroup of G.

32. Let G be a finite cyclic group of order n generated by x. Show that if y = x* where
ged(k, n) =1, then y must be a generator of G.

33. If G is an abelian group that contains a pair of cyclic subgroups of order 2, show that
G must contain a subgroup of order 4. Does this subgroup have to be cyclic?

34. Let G be an abelian group of order pq where ged(p, q) = 1. If G contains elements a
and b of order p and q respectively, then show that G is cyclic.

35. Prove that the subgroups of Z are exactly nZ forn =0,1,2,....

36. Prove that the generators of Z, are the integers r such that1 < r < nand ged(r,n) = 1.

37. Prove that if G has no proper nontrivial subgroups, then G is a cyclic group.

38. Prove that the order of an element in a cyclic group G must divide the order of the
group.
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39. For what integers # is —1 an nth root of unity?
40. Ifz=r(cos @+ isin @) and w = s(cos ¢ + i sin ¢) are two nonzero complex numbers,
show that
zw = rs[cos(0 + ¢) +isin(0 + ¢)].
41. Prove that the circle group is a subgroup of C*.
42. Prove that the nth roots of unity form a cyclic subgroup of T of order n.
43. Prove that a™ =1and «" = 1if and only if a/ = 1for d = ged(m, n).
44. Letz € C*. If |z| # 1, prove that the order of z is infinite.
45. Letz=cos 0 + isin 6 be in T where 0 € Q. Prove that the order of z is infinite.

Programming Exercises

1. Write a computer program that will write any decimal number as the sum of distinct
powers of 2. What is the largest integer that your program will handle?

2. Write a computer program to calculate a* (mod 7) by the method of repeated squares.
What are the largest values of n and x that your program will accept?

References and Suggested Readings
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RI, 1990. This book gives an excellent account of how the method of repeated squares is
used in cryptography.
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Permutation Groups

q) ermutation groups are central to the study of geometric symmetries and
to Galois theory, the study of finding solutions of polynomial equations.
They also provide abundant examples of nonabelian groups.

Let us recall for a moment the symmetries of the equilateral triangle AABC
from Chapter 2. The symmetries actually consist of permutations of the three
vertices, where a permutation of the set S = {A, B, C} is a one-to-one and onto
map 7 : S — S. The three vertices have the following six permutations.

A B C A B C A B C
A B C C A B B C A
A B C A B C A B C
A C B C B A B A C

We have used the array
A B C
B C A
to denote the permutation that sends A to B, B to C, and C to A. That is,

A~ B
B~ C
C— A.

The symmetries of a triangle form a group. In this chapter we will study groups of
this type.

4.1 Definitions and Notation

In general, the permutations of a set X form a group Sx. If X is a finite set, we can
assume X = {1,2,...,n}. In this case we write S,, instead of Sx. The following
theorem says that S, is a group. We call this group the symmetric group on n
letters.

Theorem 4.1. The symmetric group on # letters, S, is a group with n! elements,
where the binary operation is the composition of maps.
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Proof. The identity of S,, is just the identity map that sends1to1,2t02,...,nto
n.If f:S, - S, is a permutation, then ! exists, since f is one-to-one and onto;
hence, every permutation has an inverse. Composition of maps is associative,
which makes the group operation associative. We leave the proof that |S,| = n! as
an exercise. u

A subgroup of S, is called a permutation group.

Example 1. Consider the subgroup G of S5 consisting of the identity permutation
id and the permutations

(12345
“l1 2 3 5 4
(12 3 45
™\3 21 4 5
(12 3 4 5
F=\3 21 5 4/

The following table tells us how to multiply elements in the permutation group G.

id o 1

o|o id p
T | T u id
plp 1 0

.”
id|id o T
T
o

d

-

Remark. Though it is natural to multiply elements in a group from left to right,
functions are composed from right to left. Let 0 and 7 be permutations on a set X.
To compose ¢ and 7 as functions, we calculate (o 0 7)(x) = o(7(x)). That is, we
do 7 first, then o. There are several ways to approach this inconsistency. We will
adopt the convention of multiplying permutations right to left. To compute o7, do
7 first and then o. That is, by 07(x) we mean o (7(x)). (Another way of solving
this problem would be to write functions on the right; that is, instead of writing
o(x), we could write (x)o. We could also multiply permutations left to right to

agree with the usual way of multiplying elements in a group. Certainly all of these
methods have been used.

Example 2. Permutation multiplication is not usually commutative. Let
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Then
o123 4
N1 4 3 2)
but
1234
\3 21 4 )
Cycle Notation

The notation that we have used to represent permutations up to this point is
cumbersome, to say the least. To work effectively with permutation groups, we
need a more streamlined method of writing down and manipulating permutations.

A permutation o € Sx is a cycle of length k if there exist elements a,, as, ...,
ay € X such that

o(a1) =ay
o(ay) =as
a(ag) = m
and o (x) = x for all other elements x € X. We will write (ai, a,, ..., ax ) to denote

the cycle . Cycles are the building blocks of all permutations.

Example 3. The permutation

1 23 4567
0—(635 X 427)_(162354)

is a cycle of length 6, whereas

1 2 3 4 5 6
T‘( 142356 )‘(243)
is a cycle of length 3.
Not every permutation is a cycle. Consider the permutation

1 23 456
(2 13 e 5)—(1243)(56).

This permutation actually contains a cycle of length 2 and a cycle of length 4.

Example 4. It is very easy to compute products of cycles. Suppose that

o =(1352), 1=/(256).
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We can think of ¢ as
1»3, 35 52 201,

and 7 as
25 506, 62,
Hence, o7 = (1356). If u = (1634), then oy = (1652)(34).

Two cyclesin Sx, 0 = (a1, az,...,ax) and 7 = (by, by, ..., b;), are disjoint if
a; # bjforall iand j.

Example 5. The cycles (135) and (27) are disjoint; however, the cycles (135) and
(347) are not. Calculating their products, we find that

(135)(27) = (135)(27), (135)(347) = (13475).

The product of two cycles that are not disjoint may reduce to something less
complicated; the product of disjoint cycles cannot be simplified.

Proposition 4.2. Let 0 and 7 be two disjoint cycles in Sx. Then o7 = 0.

Proof. Let 0 = (ay,az,...,ar) and 7 = (b1, ba,...,b;). We must show that
01(x) = to(x) for all x € X. If x is neither {ay, as,...,ax} nor {by,by,...,b;},
then both ¢ and 7 fix x. That is, o(x) = x and 7(x) = x. Hence,

01(x) =0(r(x)) =0(x) =x = 1(x) = 7(0(x)) = 10(x).

Do not forget that we are multiplying permutations right to left, which is the opposite
of the order in which we usually multiply group elements. Now suppose that x €
{ay, as,...,ar}. Then 0(a;) = a(; mod k)+15 that is,

ay— dy, dyeas, ... dg > dg, Adg 4.
However, 7(a;) = a; since ¢ and 7 are disjoint. Therefore,
ot(a;) = 0(7(ai)) = 0(ai) = (i mod k)+1
= 1(a(i mod k)+1) = 7(0(a;)) = ro(a;).
Similarly, if x € {b;, b5, ..., b;}, then ¢ and 7 also commute. [ ]

Theorem 4.3. Every permutation in S, can be written as the product of disjoint
cycles.

Proof. We can assume that X = {1,2,...,n}. Let 0 € S,, and define Xj to be
{o(1),0%(1),...}. The set X, is finite since X is finite. Now let i be the first integer
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in X that is not in X; and define X, by {c(i), 0?(i),...}. Again, X, is a finite set.
Continuing in this manner, we can define finite disjoint sets X3, X4, . . .. Since X
is a finite set, we are guaranteed that this process will end and there will be only a
finite number of these sets, say r. If 0; is the cycle defined by

o1(x) :{ o(x) xeX;

x¢Xi)

then ¢ = 010,---0,. Since the sets X;, X,, ..., X, are disjoint, the cycles o3, ..., o,
must also be disjoint. ]

Example 6. Let

(1 2 3 4 5 6
“l6 4 31 5 2
. 1 2 3 4 5 6
“\3 21 5 6 4
Using cycle notation, we can write
o = (1624), 7= (13)(456),

o1 = (136)(245), 70 = (143)(256).

Remark. From this point forward we will find it convenient to use cycle notation to
represent permutations. When using cycle notation, we often denote the identity
permutation by (1).

Transpositions

The simplest permutation is a cycle of length 2. Such cycles are called transposi-
tions. Since

(a1,a2,...,a,) = (a1a,)(a1a,-1)-(a1a3)(a1a3),

any cycle can be written as the product of transpositions, leading to the following
proposition.

Proposition 4.4. Any permutation of a finite set containing at least two elements
can be written as the product of transpositions.

Example 7. Consider the permutation
(16)(253) = (16)(23)(25) = (16)(45)(23)(45)(25).

As we can see, there is no unique way to represent permutation as the product of
transpositions. For instance, we can write the identity permutation as (12)(12), as
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(13)(24)(13)(24), and in many other ways. However, as it turns out, no permuta-
tion can be written as the product of both an even number of transpositions and an
odd number of transpositions. For instance, we could represent the permutation
(16) by

(23)(16)(23)

or by
(35)(16)(13)(16)(13) (35) (56),
but (16) will always be the product of an odd number of transpositions.

Lemma 4.5. If the identity is written as the product of r transpositions,
id = T1T2 Ty,
then r is an even number.

Proof. We will employ induction on r. A transposition cannot be the identity;
hence, r > 1. If r = 2, then we are done. Suppose that » > 2. In this case the product
of the last two transpositions, 7,_;7,, must be one of the following cases:

(ab)(ab) = id

(be)(ab) = (ab)(ac)
(cd)(ab) = (ab)(cd)
(be)(ac) = (ab)(bc).

The first equation simply says that a transposition is its own inverse. If this
case occurs, delete 7,_; 7, from the product to obtain

id = T1T2Tr—3Tr-2.

By induction r — 2 is even; hence, r must be even.

In each of the other three cases, we can replace 7,_;7, with the right-hand
side of the corresponding equation to obtain a new product of r transpositions
for the identity. In this new product the last occurrence of a will be in the next-to-
the-last transposition. We can continue this process with 7,_,7,_; to obtain either
a product of r — 2 transpositions or a new product of r transpositions where the
last occurrence of a is in 7,_,. If the identity is the product of r — 2 transpositions,
then again we are done, by our induction hypothesis; otherwise, we will repeat
the procedure with 7,_37,_,.

At some point either we will have two adjacent, identical transpositions can-
celing each other out or a will be shuffled so that it will appear only in the first
transposition. However, the latter case cannot occur, because the identity would
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not fix a in this instance. Therefore, the identity permutation must be the product
of r — 2 transpositions and, again by our induction hypothesis, we are done. =

Theorem 4.6. If a permutation o can be expressed as the product of an even num-
ber of transpositions, then any other product of transpositions equaling ¢ must
also contain an even number of transpositions. Similarly, if o can be expressed
as the product of an odd number of transpositions, then any other product of
transpositions equaling ¢ must also contain an odd number of transpositions.

Proof. Suppose that
o = 010’2...0‘m = TITZ...TVI,

where m is even. We must show that # is also an even number. The inverse of ¢!
is 0,,---01. Since
id = 00,01 = T Ty Op 01,

n must be even by Lemma 4.5. The proof for the case in which ¢ can be expressed
as an odd number of transpositions is left as an exercise. [ ]

In light of Theorem 4.6, we define a permutation to be even if it can be
expressed as an even number of transpositions and odd if it can be expressed as
an odd number of transpositions.

The Alternating Groups
One of the most important subgroups of S, is the set of all even permutations,
A,,. The group A, is called the alternating group on # letters.

Theorem 4.7. The set A, is a subgroup of S,,.

Proof. Since the product of two even permutations must also be an even permu-
tation, A, is closed. The identity is an even permutation and therefore is in A,,. If
0 is an even permutation, then

0 = 01020y,

where o; is a transposition and r is even. Since the inverse of any transposition is
itself,
-1
0 =0,0,_1"0]

isalsoin A,. [ ]

Proposition 4.8. The number of even permutations in S,, n > 2, is equal to the
number of odd permutations; hence, the order of A, is n!/2.
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Proof. Let A, be the set of even permutations in S, and B, be the set of odd
permutations. If we can show that there is a bijection between these sets, they
must contain the same number of elements. Fix a transposition ¢ in S,. Since
n > 2, such a ¢ exists. Define

Ay A, = B,

by
Ao(T) =07

Suppose that A,(7) = A,(g). Then 07 = o and so
T=0"or= a’la;,t = .

Therefore, A, is one-to-one. We will leave the proof that A, is surjective to the
reader. n

Example 8. The group A4 is the subgroup of S, consisting of even permutations.
There are twelve elements in A4:

(1) (12)(34) (13)(24) (14)(23)
(123)  (132) (124) (142)
(134)  (143) (234)  (243).

One of the end-of-chapter exercises will be to write down all the subgroups of A4.
You will find that there is no subgroup of order 6. Does this surprise you?

Historical Note

Lagrange first thought of permutations as functions from a set to itself, but it was Cauchy
who developed the basic theorems and notation for permutations. He was the first to
use cycle notation. Augustin-Louis Cauchy (1789-1857) was born in Paris at the height
of the French Revolution. His family soon left Paris for the village of Arcueil to escape
the Reign of Terror. One of the family’s neighbors there was Pierre-Simon Laplace (1749—
1827), who encouraged him to seek a career in mathematics. Cauchy began his career as
a mathematician by solving a problem in geometry given to him by Lagrange. Over 800
papers were written by Cauchy on such diverse topics as differential equations, finite groups,
applied mathematics, and complex analysis. He was one of the mathematicians responsible
for making calculus rigorous. Perhaps more theorems and concepts in mathematics have
the name Cauchy attached to them than that of any other mathematician.
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Figure 4.1. A regular n-gon

4.2 The Dihedral Groups

Another special type of permutation group is the dihedral group. Recall the
symmetry group of an equilateral triangle in Chapter 2. Such groups consist of the
rigid motions of a regular n-sided polygon or n-gon. For n = 3,4, .. ., we define
the nth dihedral group to be the group of rigid motions of a regular n-gon. We
will denote this group by D,,. We can number the vertices of a regular n-gon by
1,2,...,n (Figure 4.1). Notice that there are exactly n choices to replace the first
vertex. If we replace the first vertex by k, then the second vertex must be replaced
either by vertex k +1 or by vertex k — I; hence, there are 2n possible rigid motions
of the n-gon. We summarize these results in the following theorem.

Theorem 4.9. The dihedral group, D,,, is a subgroup of S,, of order 2n.

Figure 4.2. Rotations and reflections of a regular n-gon
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Figure 4.3. Types of reflections of a regular n-gon

Theorem 4.10. The group D,, n > 3, consists of all products of the two elements
r and s, satisfying the relations

r"=id, s*=id, and srs=r"".
Proof. The possible motions of a regular n-gon are either reflections or rotations
(Figure 4.2). There are exactly n possible rotations:

360° 360° 360°
id) )2' ,-..,(f’l—l)'i,
n n n

We will denote the rotation 360°/n by r. The rotation r generates all of the other
rotations. That is,

360°
=k .
n
Label the n reflections sy, 2, . . ., 5, Where sy is the reflection that leaves vertex k

fixed. There are two cases of reflection, depending on whether 7 is even or odd. If
there are an even number of vertices, then 2 vertices are left fixed by a reflection.
If there are an odd number of vertices, then only a single vertex is left fixed by a
reflection (Figure 4.3). Hence, if n = 2m for some integer m, then s; = s;,,, for
1 < i < m. The order of s is two. Let s = s;. Then s? = id and r" = id. Since any
rigid motion ¢ of the n-gon replaces the first vertex by the vertex k, the second
vertex must be replaced by either k + 1 or by k — L. If it is replaced by k + 1, then
t = r¥. If it is replaced by k — 1, then ¢ = rs. Hence, r and s generate D,,; that is,
D,, consists of all finite products of r and s. We will leave the proof that srs = 7!
as an exercise. u
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Figure 4.4. The group Dy

Example 9. The group of rigid motions of a square, Dy, consists of eight elements.
With the vertices numbered 1, 2, 3, 4 (Figure 4.4), the rotations are

r = (1234)
= (13)(24)
r = (1432)
r=id
and the reflections are
s1=(24)
s2 = (13).

The order of D, is 8. The remaining two elements are

rs; = (12)(34)
rs; = (14)(23).

The Motion Group of a Cube

We can investigate the groups of rigid motions of geometric objects other than a
regular n-sided polygon to obtain interesting examples of permutation groups.
Let us consider the group of rigid motions of a cube. One of the first questions
that we can ask about this group is “what is its order?” A cube has 6 sides. If
a particular side is facing upward, then there are four possible rotations of the
cube that will preserve the upward-facing side. Hence, the order of the group is
6 - 4 = 24. We have just proved the following proposition.



THE DIHEDRAL GROUPS 75

Figure 4.5. The motion group of a cube

Proposition 4.11. The group of rigid motions of a cube contains 24 elements.

Theorem 4.12. The group of rigid motions of a cube is S4.

- =4 —

- =4

Figure 4.6. Transpositions in the motion group of a cube

Proof. From Proposition 4.11, we already know that the motion group of the cube
has 24 elements, the same number of elements as there are in S4. There are exactly
four diagonals in the cube. If we label these diagonals 1, 2, 3, and 4, we must show
that the motion group of the cube will give us any permutation of the diagonals
(Figure 4.5). If we can obtain all of these permutations, then S4 and the group
of rigid motions of the cube must be the same. To obtain a transposition we
can rotate the cube 180° about the axis joining the midpoints of opposite edges
(Figure 4.6). There are six such axes, giving all transpositions in S,. Since every
element in Sy is the product of a finite number of transpositions, the motion group
of a cube must be 4. [ ]
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Exercises

1. Write the following permutations in cycle notation.

(a) (12345) (b) (12345)
2 41 5 3 4 2 5 1 3

©) (12345) () (12345)
35 1 4 2 1 43 2 5

2. Compute each of the following.

(a) (1345)(234) (b) (12)(1253)

(c) (143)(23)(24) (d) (1423)(34)(56)(1324)

(e) (1254)(13)(25) (f) (1254)(13)(25)*

(g) (1254)7'(123)(45)(1254) (h) (1254)*(123)(45)

(i) (123)(45)(1254)7* () (1254)"°

(k) |(1254)] M) [(1254)|

(m) (12)" (n) (12537)7"

(0) [(12)(34)(12)(47)]"! (p) [(1235)(467)]"

3. Express the following permutations as products of transpositions and identify them as
even or odd.
(a) (14356) (b) (156)(234)
(c) (1426)(142) (d) (142637)
(e) (17254)(1423)(154632)
4. Find (a1, as,...,a,)7"
5. List all of the subgroups of S4. Find each of the following sets.
(@) {o0€eSs:0(1) =3}
(b) {o€Ss:0(2)=2}
(c) {0€Ss:0(1)=3andg(2) =2}
Are any of these sets subgroups of S4?
6. Find all of the subgroups in A4. What is the order of each subgroup?
7. Find all possible orders of elements in S7 and A;.
8. Show that A}y contains an element of order 15.
9. Does Ag contain an element of order 26?
10. Find an element of largest order in S, for n = 3,...,10.
11. What are the possible cycle structures of elements of As? What about Ae?
12. Let 0 € S, have order n. Show that for all integers i and j, ¢’ = ¢/ if and only if i = j
(mod n).
13. Let 0 = 01---0mm € S, be the product of disjoint cycles. Prove that the order of o is the
least common multiple of the lengths of the cycles o1, ..., 0.

14. Using cycle notation, list the elements in Ds. What are r and s? Write every element
as a product of r and s.
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15. If the diagonals of a cube are labeled as Figure 4.5, to which motion of the cube
does the permutation (12)(34) correspond? What about the other permutations of the
diagonals?

16. Find the group of rigid motions of a tetrahedron. Show that this is the same group as
Ay.

17. Prove that S, is nonabelian for n > 3.

18. Show that A, is nonabelian for n > 4.

19. Prove that D, is nonabelian for n > 3.

20. Let 0 € S,.. Prove that o can be written as the product of at most n — 1 transpositions.

21. Let o € S,. If 0 is not a cycle, prove that ¢ can be written as the product of at most
n — 2 transpositions.

22. If 0 can be expressed as an odd number of transpositions, show that any other product
of transpositions equaling ¢ must also be odd.

23. If o is a cycle of odd length, prove that ¢ is also a cycle.
24. Show that a 3-cycle is an even permutation.
25. Prove thatin A, with n > 3, any permutation is a product of cycles of length 3.

26. Prove that any element in S, can be written as a finite product of the following permu-
tations.

(a) (12),(13),...,(1n)
(b) (12),(23),...,(n—-1,n)
() (12),(12...n)
27. Let G be a group and defineamap A, : G - G by A;(a) = ga. Prove that A, is a
permutation of G.

28. Prove that there exist n! permutations of a set containing 7 elements.

29. Recall that the center of a group G is
Z(G)={geG:gx=xgforall x € G}.

Find the center of Ds. What about the center of Dyo? What is the center of D, ?
30. Let 7= (a1, a,...,ax) beacycle of length k.

(a) Prove that if ¢ is any permutation, then
010" = (0(a1),0(az),...,0(ax))

is a cycle of length k.

(b) Let u be a cycle of length k. Prove that there is a permutation ¢ such that oo™ = p.

31. For a and Bin S, define a ~ f3 if there exists an ¢ € S,, such that cac™" = B. Show
that ~ is an equivalence relation on S,.
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32. Leto € Sx. If 0" (x) = y, we will say that x ~ y.
(a) Show that ~ is an equivalence relation on X.
(b) Ifo e A, and 7 € Sy, show that 7707 € A,.
(c) Define the orbit of x € X under o € Sx to be the set

Oxo={y:x~y}

Compute the orbits of «, 3, y where

a = (1254)
B = (123)(45)
y = (13)(25).

(d) If Ok N Oy # &, prove that Oy, = O, 5. The orbits under a permutation o are
the equivalence classes corresponding to the equivalence relation ~.

(e) A subgroup H of Sy is transitive if for every x, y € X, there exists a ¢ € H such that
a(x) = y. Prove that (o) is transitive if and only if O, , = X for some x € X.

33. Leta € S, forn > 3. If aff = fa for all f € S, prove that « must be the identity

permutation; hence, the center of S, is the trivial subgroup.

34. If a is even, prove that &' is also even. Does a corresponding result hold if & is odd?

35. Show that oflﬁflocﬁ is even for a, 8 € S,.

36. Let r and s be the elements in D, described in Theorem 4.10.

(a) Show that srs =r7".
(b) Show that r*s = sr % in D,.
(c) Prove that the order of r* € D, is n/ gcd(k, n).



Cosets and Lagranges Theorem

lagrange’s Theorem, one of the most important results in finite group theory,
states that the order of a subgroup must divide the order of the group. This
theorem provides a powerful tool for analyzing finite groups; it gives us an idea of
exactly what type of subgroups we might expect a finite group to possess. Central
to understanding Lagranges’s Theorem is the notion of a coset.

5.1 Cosets

Let G bea group and H a subgroup of G. Define a left coset of H with representative
g € G to be the set
gH={gh:heH}.

Right cosets can be defined similarly by
Hg={hg:heH}.

If left and right cosets coincide or if it is clear from the context to which type of
coset that we are referring, we will use the word coset without specifying left or
right.

Example 1. Let H be the subgroup of Z¢ consisting of the elements 0 and 3. The
cosets are

0+H=3+H=1{0,3}

1+H=4+H={14}

2+H=5+H=1{2,5}.
We will always write the cosets of subgroups of Z and Z,, with the additive notation

we have used for cosets here. In a commutative group, left and right cosets are
always identical.

Example 2. Let H be the subgroup of S5 defined by the permutations

{(1), (123), (132)}.
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The left cosets of H are

(1)H = (123)H = (132)H = {(1), (123), (132)}
(12)H = (13)H = (23)H = {(12), (13), (23)}.

The right cosets of H are exactly the same as the left cosets:

H(1) = H(123) = H(132) = {(1), (123), (132)}
H(12) = H(13) = H(23) = {(12), (13), (23) .

It is not always the case that a left coset is the same as a right coset. Let K be
the subgroup of S; defined by the permutations {(1), (12) }. Then the left cosets
of K are

(DK = (12)K = {(1), (12)}
(13)K = (123)K = {(13), (123)}
(23)K = (132)K = {(23),(132) };

however, the right cosets of K are

K(1) = K(12) = {(1), (12)}
K(13) = K(132) = {(13), (132)}
K(23) = K(123) = {(23), (123)}.

The following lemma is quite useful when dealing with cosets. (We leave its
proof as an exercise.)

Lemma 5.1. Let H be a subgroup of a group G and suppose that gy, g, € G. The
following conditions are equivalent.
1. giH = g, H;
2. Hgi' =Hgy's
3. giH € g, H;
4. g2 € giH;
5. g7 gy € H.
In all of our examples the cosets of a subgroup H partition the larger group G.
The following theorem proclaims that this will always be the case.

Theorem 5.2. Let H be a subgroup of a group G. Then the left cosets of H in G
partition G. That is, the group G is the disjoint union of the left cosets of H in G.

Proof. Let g1H and g,H be two cosets of H in G. We must show that either
gHng,H=@or giH = g,H. Suppose that gHn g,H #+ @and a € ggHn g, H.
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Then by the definition of a left coset, a = g1h; = g h, for some elements h; and
h, in H. Hence, g, = g2hohi! or gy € g, H. By Lemmas.1, g H = g, H. ]

Remark. There is nothing special in this theorem about left cosets. Right cosets
also partition G; the proof of this fact is exactly the same as the proof for left cosets
except that all group multiplications are done on the opposite side of H.

Let G be a group and H be a subgroup of G. Define the index of H in G to be
the number of left cosets of H in G. We will denote the index by [G : H].

Example 3. Let G = Zg and H = {0,3}. Then [G : H] = 3.

Example 4. Suppose that G = S3, H = {(1), (123), (132) }, and K = {(1), (12) }
Then [G: H]=2and [G: K] =3.

Theorem 5.3. Let H be a subgroup of a group G. The number of left cosets of H
in G is the same as the number of right cosets of H in G.

Proof. Let L and Ry denote the set of left and right cosets of H in G, respectively.
If we can define a bijective map ¢ : Ly - Ry, then the theorem will be proved.
If gH € Ly, let $(gH) = Hg™'. By Lemma 5.1, the map ¢ is well-defined; that is,
if 1H = g, H, then Hg;' = Hg;". To show that ¢ is one-to-one, suppose that

Hg' = $(qH) = ¢(g.H) = Hg,'.
Again by Lemma 5.1, g;H = g, H. The map ¢ is onto since ¢(g'H) = Hg. =

5.2 Lagrange’s Theorem

Proposition 5.4. Let H be a subgroup of G with g € G and defineamap ¢ : H —
gH by ¢(h) = gh. The map ¢ is bijective; hence, the number of elements in H is
the same as the number of elements in gH.

Proof. We first show that the map ¢ is one-to-one. Suppose that ¢(h;) = ¢(h,)
for elements hy, h, € H. We must show that h; = hy, but ¢(hy) = gh; and
¢ (ha) = gha. So ghy = gh,, and by left cancellation h; = h,. To show that ¢ is
onto is easy. By definition every element of gH is of the form gh for some h € H
and ¢(h) = gh. ]

Theorem 5.5 (Lagrange). Let G be a finite group and let H be a subgroup of G.
Then |G|/|H]| = [G : H] is the number of distinct left cosets of H in G. In particular,
the number of elements in H must divide the number of elements in G.

Proof. The group G is partitioned into [G : H] distinct left cosets. Each left coset
has |H| elements; therefore, |G| = [G : H]|H|. ]
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Corollary 5.6. Suppose that G is a finite group and g € G. Then the order of g
must divide the number of elements in G.

Corollary 5.7. Let|G| = p with p a prime number. Then G is cyclicand any g € G
such that g # e is a generator.

Proof. Let g be in G such that g # e. Then by Corollary 5.6, the order of g must
divide the order of the group. Since |(g)| > 1, it must be p. Hence, g generates
G. u

Corollary 5.7 suggests that groups of prime order p must somehow look like
z
P-

Corollary 5.8. Let H and K be subgroups of a finite group G such that G > H o K.
Then
[G:K]=[G:H][H:K].

Proof. Observe that

6k =G G G k. .
Kl H| K]

The converse of Lagrange’s Theorem is false. The group A4 has order 12; however,
it can be shown that it does not possess a subgroup of order 6. According to
Lagrange’s Theorem, subgroups of a group of order 12 can have orders of either
1, 2, 3, 4, or 6. However, we are not guaranteed that subgroups of every possible
order exist. To prove that A4 has no subgroup of order 6, we will assume that it
does have a subgroup H such that |H| = 6 and show that a contradiction must
occur. The group A4 contains eight 3-cycles; hence, H must contain a 3-cycle.
We will show that if H contains one 3-cycle, then it must contain every 3-cycle,

contradicting the assumption that H has only 6 elements.

Theorem 5.9. Two cycles 7 and g in S, have the same length if and only if there
exists a o € S, such that y = o707,

Proof. Suppose that
T= (al,az,...,ak), u= (bl,bz,...,bk).

Define ¢ to be the permutation

o(a) =by, o(ay)=by, : o(ax)=b.

Then y = oto ™.
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Conversely, suppose that 7 = (aj,a,...,ax) is a k-cycle and ¢ € S,,. If
0(a;) =band 0(a(; mod k)+1) = b', then u(b) = b'. Hence,

p=(0(ar),0(az),...,a(ax)).
Since ¢ is one-to-one and onto, y is a cycle of the same length as 7. ]
Corollary 5.10. The group A4 has no subgroup of order 6.

Proof. Since [A4 : H]| = 2, there are only two cosets of H in A4. Inasmuch as one
of the cosets is H itself, right and left cosets must coincide; therefore, gH = Hg or
gHg™' = H for every g € A4. By Theorem 5.9, if H contains one 3-cycle, then it
must contain every 3-cycle, contradicting the order of H. ]

5.3 Fermat’s and Euler’s Theorems

The Euler ¢-function is the map ¢ : N - N defined by ¢(n) = 1for n = 1, and, for
n > 1, ¢(n) is the number of positive integers m with 1 < m < nand gcd(m, n) = 1.

From Proposition 2.1, we know that the order of U(#n), the group of units
in Z,, is ¢(n). For example, |U(12)| = ¢(12) = 4 since the numbers that are
relatively prime to 12 are 1, 5, 7, and 11. For any prime p, ¢(p) = p — 1. We state
these results in the following theorem.

Theorem 5.11. Let U(#) be the group of units in Z,,. Then |U(n)| = ¢(n).

The following theorem is an important result in number theory, due to Leon-
hard Euler.

Theorem 5.12 (Euler’s Theorem). Let a and n be integers such that n > 0 and
gcd(a, n) = 1. Then a?™ =1 (mod n).

Proof. By Theorem s.11 the order of U(n) is ¢(n). Consequently, a®(") = 1 for
all a € U(n); or a®") —1is divisible by n. Therefore, a®(") =1 (mod n). ]

If we consider the special case of Euler’s Theorem in which # = p is prime and
recall that ¢(p) = p — 1, we obtain the following result, due to Pierre de Fermat.

Theorem 5.13 (Fermat’s Little Theorem). Let p be any prime number and suppose
that p+a. Then
a??=1 (mod p).

Furthermore, for any integer b, b¥ = b (mod p).

Historical Note

Joseph-Louis Lagrange (1736-1813), born in Turin, Italy, was of French and Italian descent.
His talent for mathematics became apparent at an early age. Leonhard Euler recognized
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Lagrange’s abilities when Lagrange, who was only 19, communicated to Euler some work
that he had done in the calculus of variations. That year he was also named a professor at the
Royal Artillery School in Turin. At the age of 23 he joined the Berlin Academy. Frederick the
Great had written to Lagrange proclaiming that the “greatest king in Europe” should have
the “greatest mathematician in Europe” at his court. For 20 years Lagrange held the position
vacated by his mentor, Euler. His works include contributions to number theory, group
theory, physics and mechanics, the calculus of variations, the theory of equations, and
differential equations. Along with Laplace and Lavoisier, Lagrange was one of the people
responsible for designing the metric system. During his life Lagrange profoundly influenced
the development of mathematics, leaving much to the next generation of mathematicians
in the form of examples and new problems to be solved.

Exercises

1. Suppose that G is a finite group with an element g of order 5 and an element h of order
7. Why must |G| > 35?

2. Suppose that G is a finite group with 6o elements. What are the orders of possible
subgroups of G?

3. Prove or disprove: Every subgroup of the integers has finite index.

4. Prove or disprove: Every subgroup of the integers has finite order.

5. List the left and right cosets of the subgroups in each of the following.

(a) (8)inZx (e) A,in S,
(b) (3)in U(8) (f) Dsin S4
(¢c) 3ZinZ (g TinC*
(d) Asin Sy (h) H=1{(1),(123),(132)} in S4

6. Describe the left cosets of SL,(R) in GL,(R). What is the index of SL,(R) in GL,(R)?

7. Verify Euler’s Theorem for n =15 and a = 4.

8. Use Fermats Little Theorem to show that if p = 4n + 3 is prime, there is no solution to
the equation x* = -1 (mod p).

9. Show that the integers have infinite index in the additive group of rational numbers.

10. Show that the additive group of real numbers has infinite index in the additive group
of the complex numbers.

11. Let H be a subgroup of a group G and suppose that gi, g2 € G. Prove that the following
conditions are equivalent.

(a) ¢oH = g2H

(b) Hgi' = Hg,'

(0 @H € g.H

(d) g2eqH

(& gi'lgeH
12. If ghg™ e Hforall g € G and h € H, show that right cosets are identical to left cosets.
13. What fails in the proof of Theorem 5.3 if ¢ : Ly — Ry is defined by ¢(gH) = Hg?
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14. Suppose that g" = e. Show that the order of g divides n.

15. Modify the proof of Theorem 5.9 to show that any two permutations «, f € S, have
the same cycle structure if and only if there exists a permutation y such that 8 = yay™.
If B = yay™ for some y € S,, then a and f3 are conjugate.

16. If |G| = 2n, prove that the number of elements of order 2 is odd. Use this result to
show that G must contain a subgroup of order 2.

17. Suppose that [G : H] = 2. If a and b are not in H, show that ab € H.
18. If [G: H] = 2, prove that gH = Hg.
19. Let H and K be subgroups of a group G. Prove that gH n gK isa coset of HN K in G.

20. Let H and K be subgroups of a group G. Define a relation ~ on G by a ~ b if there
existsan h € H and a k € K such that hak = b. Show that this relation is an equivalence
relation. The corresponding equivalence classes are called double cosets. Compute the
double cosets of H = {(1), (123), (132) } in A4.

21. If G isa group of order p” where p is prime, show that G must have a proper subgroup
of order p. If n > 3, is it true that G will have a proper subgroup of order p*?

22. Let G be a cyclic group of order n. Show that there are exactly ¢(n) generators for G.

23. Let n = pj!p3?--p:* be the factorization of 7 into distinct primes. Prove that

w32 2)

n=> ¢(d)

d|n

24. Show that

for all positive integers 7.
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Introduction to Cryptography

Cryptography is the study of sending and receiving secret messages. The aim

of cryptography is to send messages across a channel so only the intended
recipient of the message can read it. In addition, when a message is received, the
recipient usually requires some assurance that the message is authentic; that is, that
it has not been sent by someone who is trying to deceive the recipient. Modern
cryptography is heavily dependent on abstract algebra and number theory.

The message to be sent is called the plaintext message. The disguised message
is called the ciphertext. The plaintext and the ciphertext are both written in an
alphabet, consisting of letters or characters. Characters can include not only the
familiar alphabetic characters A, ..., Z and a, .. ., z but also digits, punctuation
marks, and blanks. A cryptosystem, or cipher, has two parts: encryption, the
process of transforming a plaintext message to a ciphertext message, and decryp-
tion, the reverse transformation of changing a ciphertext message into a plaintext
message.

There are many different families of cryptosystems, each distinguished by
a particular encryption algorithm. Cryptosystems in a specified cryptographic
family are distinguished from one another by a parameter to the encryption
function called a key. A classical cryptosystem has a single key, which must be
kept secret, known only to the sender and the receiver of the message. If person
A wishes to send secret messages to two different people B and C, and does not
wish to have B understand C’s messages or vice versa, A must use two separate
keys, so one cryptosystem is used for exchanging messages with B, and another is
used for exchanging messages with C.

Systems that use two separate keys, one for encoding and another for decoding,
are called public key cryptosystems. Since knowledge of the encoding key does
not allow anyone to guess at the decoding key, the encoding key can be made
public. A public key cryptosystem allows A and B to send messages to C using
the same encoding key. Anyone is capable of encoding a message to be sent to C,
but only C knows how to decode such a message.

6.1 Private Key Cryptography

In single or private key cryptosystems the same key is used for both encrypting
and decrypting messages. To encrypt a plaintext message, we apply to the message
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some function which is kept secret, say f. This function will yield an encrypted
message. Given the encrypted form of the message, we can recover the original
message by applying the inverse transformation f~'. The transformation f must
be relatively easy to compute, as must f~'; however, f must be extremely difficult
to guess at if only examples of coded messages are available.

Example 1. One of the first and most famous private key cryptosystems was
the shift code used by Julius Caesar. We first digitize the alphabet by letting
A =00,B=01,...,Z=25. The encoding function will be

f(p) = p+3mod 26;
thatis, A~ D,B+ E,...,Z + C. The decoding function is then
F(p) = p-3mod 26 = p +23 mod 26.

Suppose we receive the encoded message DOJHEUD. To decode this message, we
first digitize it:
3,14,9,7,4,20, 3.

Next we apply the inverse transformation to get
0,11,6,4,1,17,0,

or ALGEBRA. Notice here that there is nothing special about either of the numbers
3 or 26. We could have used a larger alphabet or a different shift.

Cryptanalysis is concerned with deciphering a received or intercepted message.
Methods from probability and statistics are great aids in deciphering an intercepted
message; for example, the frequency analysis of the characters appearing in the
intercepted message often makes its decryption possible.

Example 2. Suppose we receive a message that we know was encrypted by using
a shift transformation on single letters of the 26-letter alphabet. To find out
exactly what the shift transformation was, we must compute b in the equation
f(p) = p+ b mod 26. We can do this using frequency analysis. The letter E = 04
is the most commonly occurring letter in the English language. Suppose that
S = 18 is the most commonly occurring letter in the ciphertext. Then we have
good reason to suspect that 18 = 4 + b mod 26, or b = 14. Therefore, the most
likely encrypting function is

f(p) = p+14 mod 26.
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The corresponding decrypting function is
f(p) = p +12 mod 26.

It is now easy to determine whether or not our guess is correct.

Simple shift codes are examples of monoalphabetic cryptosystems. In these
ciphers a character in the enciphered message represents exactly one character in
the original message. Such cryptosystems are not very sophisticated and are quite
easy to break. In fact, in a simple shift as described in Example 1, there are only 26
possible keys. It would be quite easy to try them all rather than to use frequency
analysis.

Let us investigate a slightly more sophisticated cryptosystem. Suppose that
the encoding function is given by

f(p) = ap+ b mod 26.

We first need to find out when a decoding function f™" exists. Such a decoding
function exists when we can solve the equation

¢ =ap+bmod26

for p. By Proposition 2.1, this is possible exactly when a has an inverse or, equiva-
lently, when gcd(a,26) = 1. In this case

f(p)=a'p-a'bmod 26.

Such a cryptosystem is called an affine cryptosystem.

Example 3. Let us consider the affine cryptosystem f(p) = ap + b mod 26. For
this cryptosystem to work we must choose an a € Z,¢ that is invertible. This is only
possibleif gcd(a, 26) = 1. Recognizing this fact, we willlet a = 5 since gcd(5, 26) =
1. It is easy to see that a' = 21. Therefore, we can take our encryption function
tobe f(p) = 5p + 3 mod 26. Thus, ALGEBRA is encoded as 3,6,7,23,8,10, 3, or
DGHXIKD. The decryption function will be

f(p) = 21p —21-3 mod 26 = 21p + 15 mod 26.

A cryptosystem would be more secure if a ciphertext letter could represent
more than one plaintext letter. To give an example of this type of cryptosystem,
called a polyalphabetic cryptosystem, we will generalize affine codes by using ma-
trices. The idea works roughly the same as before; however, instead of encrypting
one letter at a time we will encrypt pairs of letters. We can store a pair of letters p;
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(1)

Let A be a 2 x 2 invertible matrix with entries in Z,5. We can define an encoding
function by

and p, in a vector

f(p)=Ap+b,

where b is a fixed column vector and matrix operations are performed in Z,4. The
decoding function must be

f(p)=Aa"p-AT.

Example 4. Suppose that we wish to encode the word HELP. The corresponding
digit string is 7, 4,11,15. If
35

2 21
A= .
( 25 3 )
Ifb = (2,2)", then our message is encrypted as RRCR. The encrypted letter R
represents more than one plaintext letter.

then

Frequency analysis can still be performed on a polyalphabetic cryptosystem,
because we have a good understanding of how pairs of letters appear in the English
language. The pair th appears quite often; the pair gz never appears. To avoid
decryption by a third party, we must use a larger matrix than the one we used in
Example 4.

6.2 Public Key Cryptography

If traditional cryptosystems are used, anyone who knows enough to encode a mes-
sage will also know enough to decode an intercepted message. In 1976, W. Diffie
and M. Hellman proposed public key cryptography, which is based on the obser-
vation that the encryption and decryption procedures need not have the same key.
This removes the requirement that the encoding key be kept secret. The encoding
function f must be relatively easy to compute, but f~! must be extremely difficult
to compute without some additional information, so that someone who knows
only the encrypting key cannot find the decrypting key without prohibitive com-
putation. It is interesting to note that to date, no system has been proposed that
has been proven to be “one-way;” that is, for any existing public key cryptosystem,
it has never been shown to be computationally prohibitive to decode messages
with only knowledge of the encoding key.
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The RSA Cryptosystem

The rsa cryptosystem introduced by R. Rivest, A. Shamir, and L. Adleman in 1978,
is based on the difficulty of factoring large numbers. Though it is not a difficult
task to find two large random primes and multiply them together, factoring a
150-digit number that is the product of two large primes would take 100 million
computers operating at 10 million instructions per second about 50 million years
under the fastest algorithms currently known.

The RsaA cryptosystem works as follows. Suppose that we choose two random
150-digit prime numbers p and q. Next, we compute the product # = pg and also
compute ¢(n) = m = (p —1)(q — 1), where ¢ is the Euler ¢-function. Now we
start choosing random integers E until we find one that is relatively prime to m;
that is, we choose E such that gcd(E, m) = 1. Using the Euclidean algorithm, we
can find a number D such that DE =1 (mod m). The numbers # and E are now
made public.

Suppose now that person B (Bob) wishes to send person A (Alice) a message
over a public line. Since E and n are known to everyone, anyone can encode
messages. Bob first digitizes the message according to some scheme, say A =
00,B = 02,...,Z = 25. If necessary, he will break the message into pieces such
that each piece is a positive integer less than n. Suppose x is one of the pieces.
Bob forms the number y = x mod n and sends y to Alice. For Alice to recover
x, she need only compute x = y© mod n. Only Alice knows D.

Example 5. Before exploring the theory behind the rRsA cryptosystem or attempt-
ing to use large integers, we will use some small integers just to see that the system
does indeed work. Suppose that we wish to send some message, which when
digitized is 23. Let p = 23 and g = 29. Then

n = pq =667

and
¢(n) =m=(p-1)(q-1) = 6l6.

We can let E = 487, since gcd(616,487) = 1. The encoded message is computed
to be
23*¥ mod 667 = 368.

This computation can be reasonably done by using the method of repeated squares
as described in Chapter 3. Using the Euclidean algorithm, we determine that
191E = 1+ 151m; therefore, the decrypting key is (n, D) = (667,191). We can
recover the original message by calculating

368! mod 667 = 23.
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Now let us examine why the RsaA cryptosystem works. We know that DE =1
(mod m); hence, there exists a k such that

DE=km+1=k¢(n) +1.
By Theorem 5.12,
yD _ (XE)D _ xDE :ka+1 _ (xgb(n))kx = x mod n.

We can now ask how one would go about breaking the rsa cryptosystem. To
find D given n and E, we simply need to factor # and solve for D by using the
Euclidean algorithm. If we had known that 667 = 23 - 29 in Example 5, we could
have recovered D.

Message Verification

There is a problem of message verification in public key cryptosystems. Since
the encoding key is public knowledge, anyone has the ability to send an encoded
message. If Alice receives a message from Bob, she would like to be able to verify
that it was Bob who actually sent the message. Suppose that Bob’s encrypting key
is (n’, E’) and his decrypting key is (n’, D"). Also, suppose that Alice’s encrypting
key is (n, E) and her decrypting key is (#, D). Since encryption keys are public
information, they can exchange coded messages at their convenience. Bob wishes
to assure Alice that the message he is sending is authentic. Before Bob sends the
message x to Alice, he decrypts x with his own key:

’
x' = xP modn'.

Anyone can change x’ back to x just by encryption, but only Bob has the ability
to form x’. Now Bob encrypts x" with Alice’s encryption key to form

E
¥y =x"" mod n,

a message that only Alice can decode. Alice decodes the message and then encodes
the result with Bob’s key to read the original message, a message that could have
only been sent by Bob.

Historical Note

Encrypting secret messages goes as far back as ancient Greece and Rome. As we know,
Julius Caesar used a simple shift code to send and receive messages. However, the formal
study of encoding and decoding messages probably began with the Arabs in the 1400s. In
the fifteenth and sixteenth centuries mathematicians such as Alberti and Viete discovered
that monoalphabetic cryptosystems offered no real security. In the 1800s, E W. Kasiski
established methods for breaking ciphers in which a ciphertext letter can represent more
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than one plaintext letter, if the same key was used several times. This discovery led to the
use of cryptosystems with keys that were used only a single time. Cryptography was placed
on firm mathematical foundations by such people as W. Friedman and L. Hill in the early
part of the twentieth century.

During World War II mathematicians were very active in cryptography. Efforts to
penetrate the cryptosystems of the Axis nations were organized in England and in the
United States by such notable mathematicians as Alan Turing and A. A. Albert. The
period after World War I saw the development of special-purpose machines for encrypting
and decrypting messages. The Allies gained a tremendous advantage in World War II by
breaking the ciphers produced by the German Enigma machine and the Japanese Purple
ciphers.

By the 1970s, interest in commercial cryptography had begun to take hold. There was
a growing need to protect banking transactions, computer data, and electronic mail. In
the early 1970s, 1BM developed and implemented LUZIFER, the forerunner of the National
Bureau of Standards’ Data Encryption Standard (DEs).

The concept of a public key cryptosystem, due to Diffie and Hellman, is very recent
(1976). It was further developed by Rivest, Shamir, and Adleman with the rRsA cryptosystem
(1978). It is not known how secure any of these systems are. The trapdoor knapsack
cryptosystem, developed by Merkle and Hellman, has been broken. It is still an open
question whether or not the Rsa system can be broken. At the time of the writing of this
book, the largest number factored is 135 digits long, and at the present moment a code is
considered secure if the key is about 400 digits long and is the product of two 200-digit
primes. There has been a great deal of controversy about research in cryptography in recent
times: the National Security Agency would like to keep information about cryptography
secret, whereas the academic community has fought for the right to publish basic research.

Modern cryptography has come a long way since 1929, when Henry Stimson, Secretary
of State under Herbert Hoover, dismissed the Black Chamber (the State Department’s
cryptography division) in 1929 on the ethical grounds that “gentlemen do not read each

other’s mail”

Exercises

1. Encode IXLOVEXMATH using the cryptosystem in Example 1.

2. Decode ZLOOA WKLVA EHARQ WKHA ILQDO, which was encoded using the cryptosystem
in Example 1.

3. Assuming that monoalphabetic code was used to encode the following secret message,
what was the original message?

NBQFRSMXZF YAWJUFHWEFF ESKGQCFWDQ AFNBQFTILO FCWP

4. What is the total number of possible monoalphabetic cryptosystems? How secure are
such cryptosystems?

5. Provethata2x2 matrix A with entries in Z¢ is invertible ifand only if gcd(det(A), 26) =
1
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3 4
A= ,

use the encryption function f(p) = Ap + b to encode the message CRYPTOLOGY, where
b = (2,5)". What is the decoding function?

7. Encrypt each of the following RsA messages x so that x is divided into blocks of integers
of length 2; that is, if x = 142528, encode 14, 25, and 28 separately.

6. Given the matrix

(@) n=3551,E =629,x =31 (b) n=2257,E=47,x =23
(c) n =120979,E = 13251, (d) n =45629,F = 781,
x = 142371 x = 231561

8. Compute the decoding key D for each of the encoding keys in Exercise 7.
9. Decrypt each of the following rRsa messages y.

(a) n=3551,D=1997, y = 2791 (b) n=5893,D=8l,y=34
(c) n=120979, D = 27331, (d) n =79403,D = 671,
y = 112135 y = 129381
10. For each of the following encryption keys (#, E) in the RsA cryptosystem, compute D.
(@) (n,E) = (451,231) (b) (n,E) = (3053,1921)
(©) (n,E) = (37986733,12371) @) (n,E)=

(16394854313, 34578451)
11. Encrypted messages are often divided into blocks of # letters. A message such as THE
WORLD WONDERS WHY might be encrypted as jtw 0CFR] LPOEVYQ 10C but sent as jiw
OCF RJL POE vYQ 10C. What are the advantages of using blocks of # letters?

12. Find integers n, E, and X such that
X" =X (mod n).

Is this a potential problem in the RsA cryptosystem?

13. Every person in the class should construct an RsA cryptosystem using primes that are
10 to 15 digits long. Hand in (#, E) and an encoded message. Keep D secret. See if you
can break one another’s codes.

Additional Exercises: Primality and Factoring

In the RsA cryptosystem it is important to be able to find large prime numbers easily. Also,
this cryptosystem is not secure if we can factor a composite number that is the product
of two large primes. The solutions to both of these problems are quite easy. To find out
if a number n is prime or to factor n, we can use trial division. We simply divide n by
d =2,3,...,/n. Either a factorization will be obtained, or # is prime if no d divides n.
The problem is that such a computation is prohibitively time-consuming if 7 is very large.
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1. Abetter algorithm for factoring odd positive integers is Fermat’s factorization algorithm.

(a) Let n = ab be an odd composite number. Prove that n can be written as the
difference of two perfect squares:

n=x"—y = (x-y)(x+y).

Consequently, a positive odd integer can be factored exactly when we can find integers
x and y such that n = x* — y*.

(b) Write a program to implement the following factorization algorithm based on the
observation in part (a).

x < [Vn]

y<l

1: while xz—y2>n do
y<y+1

if % —yz <n then
x<x+1
y<l
goto 1
else if x° —y2 =0 then
a<x-y
bex+y
write n=ax*b
The expression [/71 | means the smallest integer greater than or equal to the square
root of n. Write another program to do factorization using trial division and compare
the speed of the two algorithms. Which algorithm is faster and why?
2. Primality Testing. Recall Fermat’s Little Theorem from Chapter 5. Let p be prime
with gcd(a, p) = 1. Then ™" =1 (mod p). We can use Fermat’s Little Theorem as a
screening test for primes. For example, 15 cannot be prime since

15-1

2°"'=2"=4 (mod15).

However, 17 is a potential prime since

17-1 16

277 =22"=1 (mod17).

We say that an odd composite number # is a pseudoprime if
2"'=1 (mod n).

Which of the following numbers are primes and which are pseudoprimes?
(a) 342 (b) 811
(c) 601 (d) 561
(e) 771 (f) 631
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3. Let n be an odd composite number and b be a positive integer such that gcd(b,n) =1.
Ifb" ! =1 (mod n), then  is a pseudoprime base b. Show that 341 is a pseudoprime
base 2 but not a pseudoprime base 3.

4. Write a program to determine all primes less than 2000 using trial division. Write a

second program that will determine all numbers less than 2000 that are either primes
or pseudoprimes. Compare the speed of the two programs. How many pseudoprimes
are there below 2000?
There exist composite numbers that are pseudoprimes for all bases to which they are
relatively prime. These numbers are called Carmichael numbers. The first Carmichael
number is 561 = 3 - 11 - 17. In 1992, Alford, Granville, and Pomerance proved that there
are an infinite number of Carmichael numbers [4]. However, Carmichael numbers
are very rare. There are only 2163 Carmichael numbers less than 25 x 10°. For more
sophisticated primality tests, see [1], [6], or [7].
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Algebraic Coding Theory

Coding theory is an application of algebra that has become increasingly impor-

tant over the last several decades. When we transmit data, we are concerned
about sending a message over a channel that could be affected by “noise” We wish
to be able to encode and decode the information in a manner that will allow the
detection, and possibly the correction, of errors caused by noise. This situation
arises in many areas of communications, including radio, telephone, television,
computer communications, and even compact disc player technology. Probability,
combinatorics, group theory, linear algebra, and polynomial rings over finite fields
all play important roles in coding theory.

7.1 Error-Detecting and Correcting Codes

Let us examine a simple model of a communications system for transmitting and
receiving coded messages (Figure 7.1). Uncoded messages may be composed of
letters or characters, but typically they consist of binary m-tuples. These messages
are encoded into codewords, consisting of binary n-tuples, by a device called an
encoder. The message is transmitted and then decoded. We will consider the
occurrence of errors during transmission. An error occurs if there is a change in
one or more bits in the codeword. A decoding scheme is a method that either
converts an arbitrarily received n-tuple into a meaningful decoded message or
gives an error message for that n-tuple. If the received message is a codeword
(one of the special n-tuples allowed to be transmitted), then the decoded message
must be the unique message that was encoded into the codeword. For received
noncodewords, the decoding scheme will give an error indication, or, if we are
more clever, will actually try to correct the error and reconstruct the original
message. Our goal is to transmit error-free messages as cheaply and quickly as
possible.

Example 1. One possible coding scheme would be to send a message several times
and to compare the received copies with one another. Suppose that the message
to be encoded is a binary n-tuple (x1, x5, . .., X, ). The message is encoded into a
binary 3n-tuple by simply repeating the message three times:

(%1, %2, X0 ) P (X1, X2, 0o o5 Xy X15 X2+ w5 Xy K15 X250+ o5 X ).
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m-digit message

Encoder

n-digit codeword

!

Transmitter

Noise
b

Receiver

n-digit received word

!

Decoder

!

m-digit received message or error

Figure 7.1. Encoding and decoding messages

To decode the message, we choose as the ith digit the one that appears in the
ith place in at least two of the three transmissions. For example, if the original
message is (0110), then the transmitted message will be (0110 0110 0110). If
there is a transmission error in the fifth digit, then the received codeword will
be (0110 1110 0110), which will be correctly decoded as (0110)." This triple-
repetition method will automatically detect and correct all single errors, but it
is slow and inefficient: to send a message consisting of n bits, 21 extra bits are
required, and we can only detect and correct single errors. We will see that it is
possible to find an encoding scheme that will encode a message of # bits into m
bits with m much smaller than 3#.

Example 2. Even parity, a commonly used coding scheme, is much more efficient
than the simple repetition scheme. The ascir (American Standard Code for
Information Interchange) coding system uses binary 8-tuples, yielding 2° = 256
possible 8-tuples. However, only seven bits are needed since there are only 27 = 128
asci1i characters. What can or should be done with the extra bit? Using the full

"We will adopt the convention that bits are numbered left to right in binary n-tuples.
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eight bits, we can detect single transmission errors. For example, the asc1 codes
for A, B, and C are

A = 6559 = 010000015,

B = 6659 = 01000010,

C = 6710 = 01000011,.

Notice that the leftmost bit is always set to 0; that is, the 128 asc1r characters have

codes
00000000, = 049,

01111111, =127p.

The bit can be used for error checking on the other seven bits. It is set to either 0
or 1 so that the total number of 1 bits in the representation of a character is even.
Using even parity, the codes for A, B, and C now become

A =01000001,,
B =01000010,,
C =11000011,.

Suppose an A is sent and a transmission error in the sixth bit is caused by noise
over the communication channel so that (01000101) is received. We know an
error has occurred since the received word has an odd number of 1’s, and we
can now request that the codeword be transmitted again. When used for error
checking, the leftmost bit is called a parity check bit.

By far the most common error-detecting codes used in computers are based on
the addition of a parity bit. Typically, a computer stores information in m-tuples
called words. Common word lengths are 8, 16, and 32 bits. One bit in the word is
set aside as the parity check bit, and is not used to store information. This bit is
set to either 0 or 1, depending on the number of Is in the word.

Adding a parity check bit allows the detection of all single errors because
changing a single bit either increases or decreases the number of I’s by one, and
in either case the parity has been changed from even to odd, so the new word is
not a codeword. (We could also construct an error detection scheme based on
odd parity; that is, we could set the parity check bit so that a codeword always has
an odd number of 1’s.)

The even parity system is easy to implement, but has two drawbacks. First,
multiple errors are not detectable. Suppose an A is sent and the first and seventh
bits are changed from 0 to 1. The received word is a codeword, but will be decoded
into a C instead of an A. Second, we do not have the ability to correct errors. If the
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8-tuple (10011000) is received, we know that an error has occurred, but we have
no idea which bit has been changed. We will now investigate a coding scheme
that will not only allow us to detect transmission errors but will actually correct
the errors.

Received Word
000 001 010 O11 100 101 110 111

Transmitted 000 0 1 1 2 1 2 2 3
Codeword 111 3 2 2 1 2 1 1 0

Table 7.1. A repetition code

Example 3. Suppose that our original message is either a 0 or a 1, and that 0
encodes to (000) and 1 encodes to (111). If only a single error occurs during
transmission, we can detect and correct the error. For example, if a 101 is received,
then the second bit must have been changed from a 1 to a 0. The originally
transmitted codeword must have been (111). This method will detect and correct
all single errors.

In Table 7.1, we present all possible words that might be received for the
transmitted codewords (000) and (111). Table 7.1 also shows the number of bits
by which each received 3-tuple differs from each original codeword.

Maximum-Likelihood Decoding®

The coding scheme presented in Example 3 is not a complete solution to the
problem because it does not account for the possibility of multiple errors. For
example, either a (000) or a (111) could be sent and a (001) received. We have no
means of deciding from the received word whether there was a single error in
the third bit or two errors, one in the first bit and one in the second. No matter
what coding scheme is used, an incorrect message could be received: we could
transmit a (000), have errors in all three bits, and receive the codeword (111). It is
important to make explicit assumptions about the likelihood and distribution of
transmission errors so that, in a particular application, it will be known whether
a given error detection scheme is appropriate. We will assume that transmission
errors are rare, and, that when they do occur, they occur independently in each
bit; that is, if p is the probability of an error in one bit and ¢ is the probability
of an error in a different bit, then the probability of errors occurring in both of
these bits at the same time is pg. We will also assume that a received n-tuple is
decoded into a codeword that is closest to it; that is, we assume that the receiver
uses maximum-likelihood decoding.

*This section requires a knowledge of probability, but can be skipped without loss of continuity.
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Figure 7.2. Binary symmetric channel

A binary symmetric channel is a model that consists of a transmitter capable
of sending a binary signal, either a 0 or a 1, together with a receiver. Let p be the
probability that the signal is correctly received. Then g = 1 — p is the probability
of an incorrect reception. If a 1is sent, then the probability that a 1 is received
is p and the probability that a 0 is received is q (Figure 7.2). The probability that
no errors occur during the transmission of a binary codeword of length # is p”.
For example, if p = 0.999 and a message consisting of 10,000 bits is sent, then the
probability of a perfect transmission is

(0.999)'%°% % 0.00005.

Theorem 7.1. If a binary n-tuple (x, . ..,x,) is transmitted across a binary sym-
metric channel with probability p that no error will occur in each coordinate,
then the probability that there are errors in exactly k coordinates is

(or
Proof. Fix k different coordinates. We first compute the probability that an error
has occurred in this fixed set of coordinates. The probability of an error occurring
in a particular one of these k coordinates is g; the probability that an error will
not occur in any of the remaining n — k coordinates is p. The probability of each
of these n independent events is g p"~*. The number of possible error patterns
with exactly k errors occurring is equal to

()=

the number of combinations of n things taken k at a time. Each of these error
patterns has probability g* p"~* of occurring; hence, the probability of all of these

error patterns is
n\ k. n-k
. ]
(d)a'r
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Example 4. Suppose that p = 0.995 and a 500-bit message is sent. The probability
that the message was sent error-free is

" =(0.995)°°° ~ 0.082.

The probability of exactly one error occurring is
(’ll)qp"“ =500(0.005)(0.995)**° ~ 0.204.

The probability of exactly two errors is

500 - 499
(Z)qu"‘z = 2 (0.005)(0.995)" ~ 0.257.

The probability of more than two errors is approximately
1-0.082 -0.204 - 0.257 = 0.457.

Block Codes

If we are to develop efficient error-detecting and error-correcting codes, we will
need more sophisticated mathematical tools. Group theory will allow faster
methods of encoding and decoding messages. A code is an (n, m)-block code
if the information that is to be coded can be divided into blocks of m binary
digits, each of which can be encoded into » binary digits. More specifically, an
(n, m)-block code consists of an encoding function

E: 7} -7}
and a decoding function
D:7} - 75.

A codeword is any element in the image of E. We also require that E be one-to-one
so that two information blocks will not be encoded into the same codeword. If
our code is to be error-correcting, then D must be onto.

Example 5. The even-parity coding system developed to detect single errors in
AsclI characters is an (8, 7)-block code. The encoding function is

E(x7,x6, e ,xl) = (Xg,X7, e ,xl),

where xg = x7 + x¢ + --- + x; with addition in Z,.

Letx=(x),...,x,)andy= (y,...,y,) be binary n-tuples. The Hamming
distance or distance, d(x,y), between x and y is the number of bits in which
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x and y differ. The distance between two codewords is the minimum number
of transmission errors required to change one codeword into the other. The
minimum distance for a code, dpiy,, is the minimum of all distances d(x,y),
where x and y are distinct codewords. The weight, w(x), of a binary codeword x
is the number of I’s in x. Clearly, w(x) = d(x,0), where 0 = (00---0).

Example 6. Let x = (10101), y = (11010), and z = (00011) be all of the code-
words in some code C. Then we have the following Hamming distances:

d(x,y)=4, d(x,z)=3, d(y,z)=3.
The minimum distance for this code is 3. We also have the following weights:
w(x) =3, w(y)=3,and w(z)=2.

The following proposition lists some basic properties about the weight of
a codeword and the distance between two codewords. The proof is left as an
exercise.

Proposition 7.2. Let x,y, and z be binary n-tuples. Then
w(x) =d(x,0);

. d(x,y) 20;

. d(x,y) = 0 exactly whenx = y;

- d(xy) =d(y,x);
. d(x,y) <d(x,2) +d(z,y).

The weights in a particular code are usually much easier to compute than
the Hamming distances between all codewords in the code. If a code is set up
carefully, we can use this fact to our advantage.

Suppose that x = (1101) and y = (1100) are codewords in some code. If
we transmit (1101) and an error occurs in the rightmost bit, then (1100) will
be received. Since (1100) is a codeword, the decoder will decode (1100) as the
transmitted message. This code is clearly not very appropriate for error detection.
The problem is that d(x,y) = 1. If x = (1100) and y = (1010) are codewords,
then d(x,y) = 2. If x is transmitted and a single error occurs, then y can never be
received. Table 7.2 gives the distances between all 4-bit codewords in which the
first three bits carry information and the fourth is an even parity check bit. We
can see that the minimum distance here is 2; hence, the code is suitable as a single
error-correcting code.

To determine exactly what the error-detecting and error-correcting capabili-
ties for a code are, we need to analyze the minimum distance for the code. Let
x and y be codewords. If d(x,y) = 1 and an error occurs where x and y differ,
then x is changed to y. The received codeword is y and no error message is given.

| T N S S
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0000 0011 0101 0110 1001 1010 1100 1111
0000 0 2 2 2 2 2 2 4
0011 2 0 2 2 2 2 4 2
0101 2 2 0 2 2 4 2 2
0110 2 2 2 0 4 2 2 2
1001 2 2 2 4 0 2 2 2
1010 2 2 4 2 2 0 2 2
1100 2 4 2 2 2 2 0 2
1111 4 2 2 2 2 2 2 0

Table 7.2. Distances between 4-bit codewords

Now suppose d(x,y) = 2. Then a single error cannot change x to y. Therefore,
if dmin = 2, we have the ability to detect single errors. However, suppose that
d(x,y) = 2,y is sent, and a noncodeword z is received such that

d(x,z) =d(y,z) = L

Then the decoder cannot decide between x and y. Even though we are aware that
an error has occurred, we do not know what the error is.

Suppose dmin > 3. Then the maximum-likelihood decoding scheme corrects
all single errors. Starting with a codeword x, an error in the transmission of a
single bit gives y with d(x,y) = 1, but d(z,y) > 2 for any other codeword z # x.
If we do not require the correction of errors, then we can detect multiple errors
when a code has a minimum distance that is greater than 3.

Theorem 7.3. Let C be a code with dp;, = 21 + 1. Then C can correct any n or
fewer errors. Furthermore, any 2# or fewer errors can be detected in C.

Proof. Suppose that a codeword x is sent and the word y is received with at most
n errors. Then d(x,y) < n. If z is any codeword other than x, then

2n+1<d(x,z) <d(x,y) +d(y,z) <n+d(y,z).

Hence, d(y,z) > n + 1 and y will be correctly decoded as x. Now suppose that
X is transmitted and vy is received and that at least one error has occurred, but
not more than 2n errors. Then1 < d(x,y) < 2n. Since the minimum distance
between codewords is 2n + 1, y cannot be a codeword. Consequently, the code
can detect between 1 and 2# errors. [

Example 7. In Table 7.3, the codewords ¢; = (00000), ¢, = (00111), ¢; = (11100),
and ¢4 = (11011) determine a single error-correcting code.
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00000 00111 11100 11011

00000 0 3 3 4
00111 3 0 4 3
11100 3 4 0 3
11011 4 3 3 0

Table 7.3. Hamming distances for an error-correcting code

Historical Note

Modern coding theory began in 1948 with C. Shannon’s paper, “A Mathematical Theory
of Information” [7]. This paper offered an example of an algebraic code, and Shannon’s
Theorem proclaimed exactly how good codes could be expected to be. Richard Hamming
began working with linear codes at Bell Labs in the late 1940s and early 1950s after becoming
frustrated because the programs that he was running could not recover from simple errors
generated by noise. Coding theory has grown tremendously in the past several years. The
Theory of Error-Correcting Codes, by MacWilliams and Sloane [5], published in 1977, already
contained over 1500 references. Linear codes (Reed-Muller (32, 6)-block codes) were used
on NAsA’s Mariner space probes. More recent space probes such as Voyager have used what
are called convolution codes. Currently, very active research is being done with Goppa
codes, which are heavily dependent on algebraic geometry.

7.2, Linear Codes

To gain more knowledge of a particular code and develop more efficient techniques
of encoding, decoding, and error detection, we need to add additional structure
to our codes. One way to accomplish this is to require that the code also be a
group. A group code is a code that is also a subgroup of Z3.

To check that a code is a group code, we need only verify one thing. If we add
any two elements in the code, the result must be an n-tuple that is again in the
code. It is not necessary to check that the inverse of the n-tuple is in the code,
since every codeword is its own inverse, nor is it necessary to check that 0 is a
codeword. For instance,

(11000101) + (11000101) = (00000000).
Example 8. Suppose that we have a code that consists of the following 7-tuples:

(0000000) (0001111) (0010101) (0011010)
(0100110) (0101001) (0110011) (0111100)
(1000011)  (1001100) (1010110) (1011001)
(1100101) (1101010) (1110000) (1111111).
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Itis a straightforward though tedious task to verify that this code is also a subgroup
of Z} and, therefore, a group code. This code is a single error-detecting and single
error-correcting code, but it is a long and tedious process to compute all of the
distances between pairs of codewords to determine that dy,;, = 3. It is much easier
to see that the minimum weight of all the nonzero codewords is 3. As we will
soon see, this is no coincidence. However, the relationship between weights and
distances in a particular code is heavily dependent on the fact that the code is a

group.
Lemma 7.4. Let x and y be binary n-tuples. Then w(x +y) = d(x,y).
Proof. Suppose that x and y are binary n-tuples. Then the distance between x and

y is exactly the number of places in which x and y differ. But x and y differ in a
particular coordinate exactly when the sum in the coordinate is 1, since

1+1=0
0+0=0
1+0=1
0+1=1.

Consequently, the weight of the sum must be the distance between the two code-
words. ]

Theorem 7.5. Let dpi, be the minimum distance for a group code C. Then dpi,
is the minimum of all the nonzero weights of the nonzero codewords in C. That
is,

Amin = min{w(x) : x # 0}.

Proof. Observe that

Amin = min{d(x,y) : x #y}
min{d(x,y) : x+y# 0}

=min{w(x+y):x+y=#0}
=min{w(z):z# 0}. ]

Linear Codes

From Example 8, it is now easy to check that the minimum nonzero weight is 3;
hence, the code does indeed detect and correct all single errors. We have now
reduced the problem of finding “good” codes to that of generating group codes.
One easy way to generate group codes is to employ a bit of matrix theory.
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Define the inner product of two binary n-tuples to be
XY =X )1+ Xn Vs

where x = (x1,%;,...,%,) and y = (y1, ¥2,- .., yn)" are column vectors.® For
example, if x = (011001)" and y = (110101)", then x - y = 0. We can also look at
an inner product as the product of a row matrix with a column matrix; that is,

x~y=xty
N
e s
Vn

=X )1t Xyttt X Ya.

Example 9. Suppose that the words to be encoded consist of all binary 3-tuples
and that our encoding scheme is even-parity. To encode an arbitrary 3-tuple, we
add a fourth bit to obtain an even number of I’s. Notice that an arbitrary n-tuple
x = (x1, %3, ..., %, )" has an even number of Is exactly when x; + x; + - + x,, = 0;
hence, a 4-tuple x = (x1, X3, X3, x4 )" has an even number of I's if x; +x, +x3+x4 = 0,
or

x~1:xt1:(x1 X, X3 x4) =0.

1
1
1
1
This example leads us to hope that there is a connection between matrices and
coding theory.

Let M,;x,(Z;) denote the set of all m x n matrices with entries in Z,. We
do matrix operations as usual except that all our addition and multiplication
operations occur in Z,. Define the null space of a matrix H € M,,»,(Z,) to be
the set of all binary n-tuples x such that Hx = 0. We denote the null space of a
matrix H by Null(H).

Example 10. Suppose that

01 0 0
H=11 11 0
0 0 1 1

*Since we will be working with matrices, we will write binary n-tuples as column vectors for the
remainder of this chapter.
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For a s5-tuple x = (x1, X2, X3, X4, X5 )" to be in the null space of H, Hx = 0. Equiva-
lently, the following system of equations must be satisfied:

Xy +x4=0
X1 +Xy+x3+x4=0

X3+ X4+ x5 =0.
The set of binary 5-tuples satisfying these equations is
(00000) (11110) (10101) (01011).
This code is easily determined to be a group code.
Theorem 7.6. Let H be in M,,»,(Z,). Then the null space of H is a group code.

Proof. Since each element of Z} is its own inverse, the only thing that really needs
to be checked here is closure. Let x,y € Null(H) for some matrix H in M,,x,,(Z5).
Then Hx = 0 and Hy = 0. So

H(x+y)=H(x+y)=Hx+Hy=0+0=0.
Hence, x + y is in the null space of H and therefore must be a codeword. [ ]

A code is a linear code if it is determined by the null space of some matrix
He me" (Zz)

Example 11. Let C be the code given by the matrix

H=

— o O

0 0 1 1
11 0 1
01 0 O
Suppose that the 7-tuple x = (010011)" is received. It is a simple matter of matrix

multiplication to determine whether or not x is a codeword. Since

0
Hx=]| 1|,

the received word is not a codeword. We must either attempt to correct the word
or request that it be transmitted again.
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7.3 Parity-Check and Generator Matrices

We need to find a systematic way of generating linear codes as well as fast methods
of decoding. By examining the properties of a matrix H and by carefully choosing
H, it is possible to develop very efficient methods of encoding and decoding
messages. To this end, we will introduce standard generator and canonical parity-
check matrices.

Suppose that H is an m x n matrix with entries in Z; and n > m. If the last
m columns of the matrix form the m x m identity matrix, I,,,, then the matrix is
a canonical parity-check matrix. More specifically, H = (A | I,,), where A is the
m x (n — m) matrix

an an A, n—m
azy dz2  t A2n-m
Am1 Am2 am,n—m

and I, is the m x m identity matrix

1 0 - 0
0 1 0
0 0 1

With each canonical parity-check matrix we can associate an n x (n —m) standard
generator matrix

Our goal will be to show that Gx = y if and only if Hy = 0. Given a message block
x to be encoded, G will allow us to quickly encode it into a linear codeword y.

Example 12. Suppose that we have the following eight words to be encoded:
(000), (001), (010), ..., (111).

For

S

I
—_—— O
O =
—_— O
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the associated standard generator and canonical parity-check matrices are

1 0 0
0 1 0
0 0 1
“=lo 11
1 1 0
1 0 1
and
01 1100
H=|1 1 0 0 1 0|,
1 01 0 01
respectively.

Observe that the rows in H represent the parity checks on certain bit positions
in a 6-tuple. The 1’s in the identity matrix serve as parity checks for the 1’s in the
same row. If x = (x1, X2, X3, X4, X5, X ), then

Xy + X3 + X4
0=Hx=| x1+x,+x5 |,
X1+ X3 + X¢

which yields a system of equations:

Xy +Xx3+x4=0
X1+ X, +x5=0

X1+ x3+x6 =0.

Here x4 serves as a check bit for x, and x3; x5 is a check bit for x; and x,; and x¢
is a check bit for x; and x3. The identity matrix keeps x4, x5, and x¢ from having
to check on each other. Hence, xi, x7, and x5 can be arbitrary but x4, x5, and x¢
must be chosen to ensure parity. The null space of H is easily computed to be

(000000) (001101) (010110) (011011)
(100011) (101110) (110101) (111000).

An even easier way to compute the null space is with the generator matrix G
(Table 7.4).

Theorem 7.7. Let H € M,,x,(Z,) be a canonical parity-check matrix. Then
Null(H) consists of all x € Z} whose first n — m bits are arbitrary but whose last
m bits are determined by Hx = 0. Each of the last m bits serves as an even parity
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Message Word | Codeword

X Gx

000 000000
001 001101
010 010110
011 011011
100 100011
101 101110
110 110101
111 111000

Table 7.4. A matrix-generated code

check bit for some of the first n—m bits. Hence, H gives rise to an (1, n—m)-block
code.

We leave the proof of this theorem as an exercise. In light of the theorem, the
first n — m bits in x are called information bits and the last m bits are called check
bits. In Example 12, the first three bits are the information bits and the last three
are the check bits.

Theorem 7.8. Suppose that G is an n x k standard generator matrix. Then
C ={y:Gx =yforx e Z¥} isan (n, k)-block code. More specifically, C is a group
code.

Proof. Let Gx; = y; and Gx, =y, be two codewords. Then y; +y; is in C since
G(x1+x) =Gx1 + Gx = y1 +¥,.

We must also show that two message blocks cannot be encoded into the same
codeword. That is, we must show that if Gx = Gy, then x = y. Suppose that
Gx = Gy. Then

Gx-Gy=G(x-y)=0.

However, the first k coordinates in G(x —y) are exactly x; — 1, ..., Xk — Y, since
they are determined by the identity matrix, Iy, part of G. Hence, G(x—y) = 0
exactly whenx =y. ]

Before we can prove the relationship between canonical parity-check matrices
and standard generating matrices, we need to prove a lemma.

Lemma 7.9. Let H = (A | I,,) be an m x n canonical parity-check matrix and

G= (I"f"‘) be the corresponding n x (n — m) standard generator matrix. Then

HG=0.
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Proof. Let C = HG. The ijth entryin C is

n
cij= . hikgkj
k=1
n—-m n
=Y higkj+ Y, hid
k=1 k=n-m+1
n-m n
= Z aik5kj+ Z (Sif(m—n),kakj
k=1 k=n-m+1
= aij + a,‘j = 0,
where
1 i=j
8 —
Y { 0 i#j
is the Kronecker delta. ]

Theorem 7.10. Let H = (A | I,,) be an m x n canonical parity-check matrix and
let G = (I”f'”) be the n x (n — m) standard generator matrix associated with
H. Let C be the code generated by G. Then y is in C if and only if Hy = 0. In
particular, C is a linear code with canonical parity-check matrix H.

Proof. First suppose thaty € C. Then Gx =y for some x € Z}'. By Lemma 7.9,
Hy = HGx = 0.

Conversely, suppose thaty = (y1, ..., y, )" isin the null space of H. We need to
find an x in Zj~™ such that Gx' = y. Since Hy = 0, the following set of equations
must be satisfied:

auyr+any:+-+ayn-mYn-m+ Yn-m+1 =0

anyi+anyr+ -+t n-mYn-m+ Yn-m1=0

Am)1tam2Y2t "+t Amn-mYn-m t Yn-m+1 = 0.

Equivalently, y,_m+1,. .., yn are determined by y1, ..., Yy_m:

Yn-m+1 = an)1tany2 + -+ adi,n-mYn-m

Yn-m+1 = auy1tanyrs+ -+ an-m)Yn-m

Yn-m+1 = Gmi Y1+ Am2Y2 + -+ Amn-mYn-m-

Consequently, we canletx; = y; fori=1,...,n— m. ]
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It would be helpful if we could compute the minimum distance of a linear
code directly from its matrix H in order to determine the error-detecting and
error-correcting capabilities of the code. Suppose that

e; = (100---00)"
e, = (010--:00)"

e, = (000---01)"

are the n-tuples in Z% of weight 1. For an m x n binary matrix H, He; is exactly
the ith column of the matrix H.

Example 13. Observe that

0
1 1 0 0 1 1
00 1 0 0 =] 0
1 0 0 1 0 1
0

We state this result in the following proposition and leave the proof as an
exercise.

Proposition 7.11. Let e; be the binary n-tuple with a 1 in the ith coordinate and
0’s elsewhere and suppose that H € M,,,x,,(Z,). Then He; is the ith column of
the matrix H.

Theorem 7.12. Let H be an m x n binary matrix. Then the null space of H is a
single error-detecting code if and only if no column of H consists entirely of zeros.

Proof. Suppose that Null(H) is a single error-detecting code. Then the minimum
distance of the code must be at least 2. Since the null space is a group code, it
is sufficient to require that the code contain no codewords of less than weight 2
other than the zero codeword. That is, e; must not be a codeword fori =1,...,n.
Since He; is the ith column of H, the only way in which e; could be in the null
space of H would be if the ith column were all zeros, which is impossible; hence,
the code must have the capability to detect at least single errors.

Conversely, suppose that no column of H is the zero column. By Proposi-
tion 711, He; # 0. [ ]
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Example 14. If we consider the matrices

1 1 1 0
H=|1001 0
1 1 0 1
and
1 1 1 0 O
H,={1 0 0 0 0|,
1 1 0 0 1

then the null space of H; is a single error-detecting code and the null space of H,
is not.

We can even do better than Theorem 7.12. This theorem gives us conditions
on a matrix H that tell us when the minimum weight of the code formed by the
null space of H is 2. We can also determine when the minimum distance of a
linear code is 3 by examining the corresponding matrix.

Example 15. If we let
1110
H=]1 0 0 1
1 1 0 0

and want to determine whether or not H is the canonical parity-check matrix for
an error-correcting code, it is necessary to make certain that Null(H) does not
contain any 4-tuples of weight 2. That is, (1100), (1010), (1001), (0110), (0101),
and (0011) must not be in Null(H). The next theorem states that we can indeed
determine that the code generated by H is error-correcting by examining the
columns of H. Notice in this example that not only does H have no zero columns,
but also that no two columns are the same.

Theorem 7.13. Let H be a binary matrix. The null space of H is a single error-
correcting code if and only if H does not contain any zero columns and no two
columns of H are identical.

Proof. The n-tuple e; + e; has I's in the ith and jth entries and 0s elsewhere, and
w(e; +e;j) =2for i+ j. Since

O:H(e,- +ej) = He; +Hej

can only occur if the ith and jth columns are identical, the null space of H is a
single error-correcting code. u

Suppose now that we have a canonical parity-check matrix H with three rows.
Then we might ask how many more columns we can add to the matrix and still
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have a null space that is a single error-detecting and single error-correcting code.
Since each column has three entries, there are 2* = 8 possible distinct columns.
We cannot add the columns

0 1 0 0
0O, 0 |,] 1 [,] O
0 0 0 1

So we can add as many as four columns and still maintain a minimum distance of
3.

In general, if H is an m x n canonical parity-check matrix, then there are
n — m information positions in each codeword. Each column has m bits, so there
are 2™ possible distinct columns. It is necessary that the columns 0, ey, ..., e, be
excluded, leaving 2" — (1+ n) remaining columns for information if we are still
to maintain the ability not only to detect but also to correct single errors.

7.4 Efficient Decoding

We are now at the stage where we are able to generate linear codes that detect
and correct errors fairly easily, but it is still a time-consuming process to decode
a received n-tuple and determine which is the closest codeword, because the
received n-tuple must be compared to each possible codeword to determine the
proper decoding. This can be a serious impediment if the code is very large.

Example 16. Given the binary matrix
1 11 0 0
H=1 0 1 0 1 0
1 0 0 01

and the 5-tuples x = (11011)" and y = (01011)", we can compute

0
Hx=] 0
0
and
1
Hy=] 0
1

Hence, x is a codeword and y is not, since x is in the null space and y is not.
Notice that Hx is identical to the first column of H. In fact, this is where the error
occurred. If we flip the first bit in y from 0 to 1, then we obtain x.
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If H is an m x n matrix and x € Z}, then we say that the syndrome of x is Hx.
The following proposition allows the quick detection and correction of errors.

Proposition 7.14. Let the m x n binary matrix H determine a linear code and let x
be the received n-tuple. Write x as x = ¢ + e, where c is the transmitted codeword
and e is the transmission error. Then the syndrome Hx of the received codeword
x is also the syndrome of the error e.

Proof. Hx = H(c+e)=Hc+ He=0+ He = He. ]

This proposition tells us that the syndrome of a received word depends solely
on the error and not on the transmitted codeword. The proof of the following
theorem follows immediately from Proposition 7.14 and from the fact that He is
the ith column of the matrix H.

Theorem 7.15. Let H € M,,,x,,(Z,) and suppose that the linear code correspond-
ing to H is single error-correcting. Let r be a received n-tuple that was transmitted
with at most one error. If the syndrome of r is 0, then no error has occurred;
otherwise, if the syndrome of r is equal to some column of H, say the ith column,
then the error has occurred in the ith bit.

Example 17. Consider the matrix

1 01 1 0
H=|0 11 0 1
1 1T 10 0

— o O

and suppose that the 6-tuples x = (111110)", y = (111111)", and z = (010111)"
have been received. Then

1 1 1
Hx=|1 |,Hy=| 1 |,Hz=]| O
1 0 0

Hence, x has an error in the third bit and z has an error in the fourth bit. The
transmitted codewords for x and z must have been (110110) and (010011), re-
spectively. The syndrome of y does not occur in any of the columns of the matrix
H, so multiple errors must have occurred to produce y.

Coset Decoding

We can use group theory to obtain another way of decoding messages. A linear
code C is a subgroup of Z%. Coset or standard decoding uses the cosets of C in Z7
to implement maximum-likelihood decoding. Suppose that C is an (1, m)-linear
code. A coset of C in Z} is written in the form x + C, where x € ZJ. By Lagrange’s
Theorem, there are 2"~ distinct cosets of C in Z%.
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Cosets

C (00000) (01101) (10011) (11110)
(10000) + C | (10000) (11101) (00011) (01110)
(01000) + C | (01000) (00101) (11011) (10110)
(00100) + C | (00100) (01001) (10111) (11010)
(00010) + C | (00010) (01111) (10001) (11100)
(00001) + C | (00001) (01100) (10010) (11111)
(10100) + C | (00111) (01010) (10100) (11001)
(00110) + C | (00110) (01011) (10101) (11000)

Table 7.5. Cosets of C

Example 18. Let C be the (5, 3)-linear code given by the parity-check matrix

0 1 1
H=|1 0 0
1 1 0

S = O
— o O

The code consists of the codewords
(00000) (01101) (10011) (11110).

There are 2°72 = 23 cosets of C in Z3, each with order 22 = 4. These cosets are
listed in Table 7.5.

Our task is to find out how knowing the cosets might help us to decode a mes-
sage. Suppose that x was the original codeword sent and r is the n-tuple received.
If e is the transmission error, then r = e + x or, equivalently, x = e + r. However,
this is exactly the statement that r is an element in the coset e + C. In maximum-
likelihood decoding we expect the error e to be as small as possible; that is, e will
have the least weight. An n-tuple of least weight in a coset is called a coset leader.
Once we have determined a coset leader for each coset, the decoding process
becomes a task of calculating r + e to obtain x.

Example 19. In Table 7.5, notice that we have chosen a representative of the least
possible weight for each coset. These representatives are coset leaders. Now
suppose that r = (01111) is the received word. To decode r, we find that it is in
the coset (00010) + C; hence, the originally transmitted codeword must have
been (01101) = (01111) + (00010).

A potential problem with this method of decoding is that we might have
to examine every coset for the received codeword. The following proposition
gives a method of implementing coset decoding. It states that we can associate
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a syndrome with each coset; hence, we can make a table that designates a coset
leader corresponding to each syndrome. Such a list is called a decoding table.

Proposition 7.16. Let C be an (n, k)-linear code given by the matrix H and sup-
pose that x and y are in ZJ. Then x and y are in the same coset of C if and only if
Hx = Hy. That is, two n-tuples are in the same coset if and only if their syndromes
are the same.

Proof. Two n-tuples x and y are in the same coset of C exactly when x —y € C;
however, this is equivalent to H(x —y) = 0 or Hx = Hy. ]

Example 20. Table 7.6 is a decoding table for the code C given in Example 18. If
x = (01111) is received, then its syndrome can be computed to be

0
Hx =

Examining the decoding table, we determine that the coset leader is (00010). It is
now easy to decode the received codeword.

Given an (n, k)-block code, the question arises of whether or not coset
decoding is a manageable scheme. A decoding table requires a list of cosets
and syndromes, one for each of the 2"~ cosets of C. Suppose that we have a
(32,24)-block code. We have a huge number of codewords, 224, yet there are only
232724 = 28 = 256 cosets.

Syndrome | Coset Leader
(000) (00000)
(001) (00001)
(010) (00010)
(011) (10000)
(100) (00100)
(101) (01000)
(110) (00110)
(111) (10100)

Table 7.6. Syndromes for each coset
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Exercises

1. Why is the following encoding scheme not acceptable?

Information: 0 1 2 3 4 5 6 7 8

Codeword: 000 001 010 O011 101 110 111 000 001

2. Without doing any addition, explain why the following set of 4-tuples in Z3 cannot be
a group code.
(0110) (1001) (1010) (1100)

3. Compute the Hamming distances between the following pairs of n-tuples.

(a) (011010),(011100) (b) (11110101),(01010100)
() (00110), (01111) (d) (1001),(0111)

4. Compute the weights of the following n-tuples.

(a) (011010) (b) (11110101)

(c) (01111) (d) (1011)

5. Suppose that a linear code C has a minimum weight of 7. What are the error-detection
and error-correction capabilities of C?

6. In each of the following codes, what is the minimum distance for the code? What
is the best situation we might hope for in connection with error detection and error
correction?

(a) (011010) (011100) (110111) (110000)

(b) (011100) (011011) (111011) (100011)
(000000) (010101) (110100) (110011)

(¢) (000000) (011100) (110101) (110001)

(d) (0110110) (0111100) (1110000) (1111111)
(1001001) (1000011) (0001111) (0000000)

7. Compute the null space of each of the following matrices. What type of (n, k)-block
codes are the null spaces? Can you find a matrix (not necessarily a standard generator
matrix) that generates each code? Are your generator matrices unique?

() 0100 0 (b) 1 01 00 0
1 0 1 0 1 1 1.0 1 0 0
1 00 1 0 0100 10
1 1.0 0 0 1
(©) ( 1.0 011 ) (d) 0001 1 11
01 0 11 01 100 1 1
101 01 01
01 100 1 1

8. Construct a (5, 2)-block code. Discuss the error-detection and error-correction capa-
bilities of your code.
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9. Let C be the code obtained from the null space of the matrix

0 1 0
H=]1 0 1
0 0 1

— o O

Decode the message
01111 10101 01110 00011

if possible.

10. Suppose that a 1000-bit binary message is transmitted. Assume that the probability of
a single error is p and that the errors occurring in different bits are independent of one
another. If p = 0.01, what is the probability of more than one error occurring? What is
the probability of exactly two errors occurring? Repeat this problem for p = 0.0001.

11. Which matrices are canonical parity-check matrices? For those matrices that are
canonical parity-check matrices, what are the corresponding standard generator matri-
ces? What are the error-detection and error-correction capabilities of the code generated
by each of these matrices?

(a) 1 1.0 0 0 (b) 01 1 00 0
001 00 1101 00
000 1 0 0100 10
1 00 0 1 1100 0 1
1110
© ( 10 0 1 ) (d) 00 01 0 00
01 1010 0
1 010010
01 100 01

12. List all possible syndromes for the codes generated by each of the matrices in the
previous exercise.

13. Let
0 1 1 1 1
H=1 0 0 0 1 1
1 0 1 0 1

Compute the syndrome caused by each of the following transmission errors.
(a) An error in the first bit

(b) An error in the third bit

(c) An error in the last bit

(d) Errors in the third and fourth bits

14. Let C be the group code in Z3 defined by the codewords (000) and (111). Compute
the cosets of H in Z3. Why was there no need to specify right or left cosets? Give the
single transmission error, if any, to which each coset corresponds.
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15. For each of the following matrices, find the cosets of the corresponding code C. Give
a decoding table for each code if possible.

() 01 0 0 0 (b) 00 1 0 0
1 01 0 1 1 101 0
1 00 1 0 01 0 1 0
1 1.0 0 1
() (1 0 01 1) (d) 100 1 1 11
01 0 11 11100 1 1
101010 1
1110010

16. Letx,y, and z be binary n-tuples. Prove each of the following statements.
(@) w(x)=d(x,0)
(b) d(x,y)=d(x+z,y+1z)
© d(x.y) = w(x-y)
17. A metriconaset X isamap d : X x X — R satisfying the following conditions.
(@) d(x,y) > 0forallx,y € X;
(b) d(x,y) = 0 exactly whenx = y;
(0 d(x,y) =d(y,x);
(d) d(x,y) <d(x,z) +d(z,y).
In other words, a metric is simply a generalization of the notion of distance. Prove that
Hamming distance is a metric on Z5. Decoding a message actually reduces to deciding
which is the closest codeword in terms of distance.

18. Let C be a linear code. Show that either the ith coordinates in the codewords of C are
all zeros or exactly half of them are zeros.

19. Let C be alinear code. Show that either every codeword has even weight or exactly
half of the codewords have even weight.

20. Show that the codewords of even weight in a linear code C are also a linear code.

21. If we are to use an error-correcting linear code to transmit the 128 asci1 characters,
what size matrix must be used? What size matrix must be used to transmit the extended
AscII character set of 256 characters? What if we require only error detection in both
cases?

22. Find the canonical parity-check matrix that gives the even parity check bit code with
three information positions. What is the matrix for seven information positions? What
are the corresponding standard generator matrices?

23. How many check positions are needed for a single error-correcting code with 20
information positions? With 32 information positions?

24. Lete; be the binary n-tuple with a1in the ith coordinate and 0’s elsewhere and suppose
that H € Myx, (Z;). Show that He; is the ith column of the matrix H.
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25. Let Cbe an (n, k)-linear code. Define the dual or orthogonal code of C to be
C'={xeZ):x-y=0forallye C}.

(a) Find the dual code of the linear code C where C is given by the matrix

—_ o o

1 1 1 0
0 0 1 1
1 0 0 0

(b) Show that C* is an (n, n — k)-linear code.
(c) Find the standard generator and parity-check matrices of C and C*. What happens
in general? Prove your conjecture.
26. Let H be an m x n matrix over Z,, where the ith column is the number i written in
binary with m bits. The null space of such a matrix is called a Hamming code.

(a) Show that the matrix
0O 0 0 1 1 1
H=] 0 1 1 0 0 1
1 01 0 1 O

generates a Hamming code. What are the error-correcting properties of a Hamming
code?

(b) The column corresponding to the syndrome also marks the bit that was in error;
that is, the ith column of the matrix is i written as a binary number, and the syndrome
immediately tells us which bit is in error. If the received word is (101011), compute
the syndrome. In which bit did the error occur in this case, and what codeword was
originally transmitted?

(c) Give a binary matrix H for the Hamming code with six information positions and
four check positions. What are the check positions and what are the information
positions? Encode the messages (101101) and (001001). Decode the received words
(0010000101) and (0000101100). What are the possible syndromes for this code?

(d) What is the number of check bits and the number of information bits in an (m, n)-
block Hamming code? Give both an upper and a lower bound on the number of
information bits in terms of the number of check bits. Hamming codes having the
maximum possible number of information bits with k check bits are called perfect.
Every possible syndrome except 0 occurs as a column. If the number of information
bits is less than the maximum, then the code is called shortened. In this case, give an
example showing that some syndromes can represent multiple errors.

Programming Exercises

Write a program to implement a (16,12)-linear code. Your program should be able to
encode and decode messages using coset decoding. Once your program is written, write a
program to simulate a binary symmetric channel with transmission noise. Compare the
results of your simulation with the theoretically predicted error probability.
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Tsomorphisms

M any groups may appear to be different at first glance, but can be shown to
be the same by a simple renaming of the group elements. For example,

Z4 and the subgroup of the circle group T generated by i can be shown to be the
same by demonstrating a one-to-one correspondence between the elements of
the two groups and between the group operations. In such a case we say that the
groups are isomorphic.

8.1 Definition and Examples

Two groups (G, -) and (H, o) are isomorphic if there exists a one-to-one and onto
map ¢ : G - H such that the group operation is preserved; that is,

¢(a-b) = ¢(a) o $(b)

forall @ and b in G. If G is isomorphic to H, we write G = H. The map ¢ is called
an isomorphism.

Example 1. To show that Z4 = (i), define a map ¢ : Z4 — (i) by ¢(n) = i". We
must show that ¢ is bijective and preserves the group operation. The map ¢ is
one-to-one and onto because

6(0)=1, ¢(1)=i, $(2)=-Land (3)=i.
Since
$(m+n)=i""" =i"i" = $(m)¢(n),
the group operation is preserved.

Example 2. We can define an isomorphism ¢ from the additive group of real
numbers (R, +) to the multiplicative group of positive real numbers (R*,-) with
the exponential map; that is,

Blx+y) = = " = $(0)9(y).

Of course, we must still show that ¢ is one-to-one and onto, but this can be
determined using calculus.
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Example 3. The integers are isomorphic to the subgroup of Q* consisting of
elements of the form 2”. Define a map ¢ : Z — Q* by ¢(n) = 2". Then

d(m+n)=2""=2"2" = p(m)¢(n).

By definition the map ¢ is onto the subset {2" : n € Z} of Q*. To show that the
map is injective, assume that m # n. If we can show that ¢(m) # ¢(n), then we
are done. Suppose that m > n and assume that ¢(m) = ¢(n). Then 2" = 2" or
27" =1, which is impossible since m — n > 0.

Example 4. The groups Zg and Z;, cannot be isomorphic since they have different
orders; however, it is true that U(8) = U(12). We know that

U(8) = {1,3,5,7}
U(12) = {1,5,7,11}.

An isomorphism ¢ : U(8) — U(12) is then given by

1—1
35
57
7 —11.

The map ¢ is not the only possible isomorphism between these two groups. We
could define another isomorphism y by w(1) = L, w(3) =11, w(5) =5,¢(7) = 7. In
fact, both of these groups are isomorphic to Z, x Z, (see Example 14 in Chapter 2).

Example 5. Even though S; and Zs possess the same number of elements, we
would suspect that they are not isomorphic, because Z¢ is abelian and S; is
nonabelian. To demonstrate that this is indeed the case, suppose that ¢ : Zg - S3
is an isomorphism. Let a, b € S; be two elements such that ab # ba. Since ¢ is an
isomorphism, there exist elements m and 7 in Z4 such that

¢(m) =a
¢(n) =b.

However,

ab = ¢(m)¢(n) = ¢(m+n) = (n+m) = ¢(n)¢(m) = ba,

which contradicts the fact that a and b do not commute.
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Theorem 8.1. Let ¢ : G — H be an isomorphism of two groups. Then the
following statements are true.

1. 7' H - G is an isomorphism.

2. |G| = |H|

3. If G is abelian, then H is abelian.

4. If G is cyclic, then H is cyclic.

5. If G has a subgroup of order n, then H has a subgroup of order n.

Proof. Assertions (1) and (2) follow from the fact that ¢ is a bijection. We will
prove (3) here and leave the remainder of the theorem to be proved in the exercises.

(3) Suppose that h; and h; are elements of H. Since ¢ is onto, there exist
elements gy, g, € G such that ¢(g1) = h; and ¢(g2) = h,. Therefore,

hhy = ¢(91)6(g2) = $(9192) = $(9291) = $(92)9(1) = 2. =
We are now in a position to characterize all cyclic groups.

Theorem 8.2. All cyclic groups of infinite order are isomorphic to Z.

Proof. Let G be a cyclic group with infinite order and suppose that a is a generator
of G. Defineamap ¢: Z - Gby ¢ : n+— a”. Then

d(m+n)=a""=a"a" = ¢(m)d(n).

To show that ¢ is injective, suppose that m and n are two elements in Z, where
m # n. We can assume that m > n. We must show that a™ + a”. Let us suppose
the contrary; that is, a” = a”. In this case a™™" = e, where m — n > 0, which
contradicts the fact that a has infinite order. Our map is onto since any element
in G can be written as a” for some integer n and ¢(n) = a”. ]

Theorem 8.3. If G is a cyclic group of order #, then G is isomorphic to Z,,.

Proof. Let G be a cyclic group of order n generated by a and define a map ¢ :
Z, > Gby ¢ : k+ a*, where 0 < k < n. The proof that ¢ is an isomorphism is
one of the end-of-chapter exercises. ]

Corollary 8.4. If G is a group of order p, where p is a prime number, then G is
isomorphic to Z,,.

Proof. The proofis a direct result of Corollary s.7. ]

The main goal in group theory is to classify all groups; however, it makes sense
to consider two groups to be the same if they are isomorphic. We state this result
in the following theorem, whose proof is left as an exercise.
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Theorem 8.5. The isomorphism of groups determines an equivalence relation on
the class of all groups.

Hence, we can modify our goal of classifying all groups to classifying all groups
up to isomorphism; that is, we will consider two groups to be the same if they are
isomorphic.

Cayley’s Theorem

Cayley proved that if G is a group, it is isomorphic to a group of permutations on
some set; hence, every group is a permutation group. Cayley’s Theorem is what
we call a representation theorem. The aim of representation theory is to find an
isomorphism of some group G that we wish to study into a group that we know a
great deal about, such as a group of permutations or matrices.

Example 6. Consider the group Z5. The Cayley table for Z; is as follows.

The addition table of Z3 suggests that it is the same as the permutation group
G ={(0), (012), (021) }. The isomorphism here is

01 2
0”(0 1 2):(0)
0 1 2
1»(1 5 0):(012)
01 2
2»(2 . 1):(021).

Theorem 8.6 (Cayley). Every group is isomorphic to a group of permutations.

Proof. Let G be a group. We must find a group of permutations G that is iso-
morphic to G. For any g € G, define a function 1, : G - G by A4(a) = ga. We
claim that A, is a permutation of G. To show that A, is one-to-one, suppose that
Ag(a) = A4(b). Then

ga=»~s(a)=2,4(b) = gb.

Hence, a = b. To show that A is onto, we must prove that for each a € G, there is
absuchthat A,(b) = a.Letb = g'a.
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Now we are ready to define our group G. Let
G={ly:g9¢G}.

We must show that G is a group under composition of functions and find an
isomorphism between G and G. We have closure under composition of functions
since

(AgoAn)(a) =Ag(ha) = gha = Ay (a).

Also,
Ae(a)=ea=a

and
(Ag10Ag)(a) =A(ga) =g 'ga=a=2A/(a).

We can define an isomorphism from G to G by ¢ : g ~ 4. The group
operation is preserved since

¢(gh) = Agn = AgAn = (g)¢(h).
It is also one-to-one, because if ¢(g)(a) = ¢(h)(a), then
ga=>Aga=Aya=ha.

Hence, g = h. That ¢ is onto follows from the fact that ¢(g) = A, for any
Ay €G. ]

The isomorphism g ~ A, is known as the left regular representation of G.

Historical Note

Arthur Cayley was born in England in 1821, though he spent much of the first part of
his life in Russia, where his father was a merchant. Cayley was educated at Cambridge,
where he took the first Smith’s Prize in mathematics. A lawyer for much of his adult life, he
wrote several papers in his early twenties before entering the legal profession at the age
of 25. While practicing law he continued his mathematical research, writing more than
300 papers during this period of his life. These included some of his best work. In 1863 he
left law to become a professor at Cambridge. Cayley wrote more than 9oo papers in fields
such as group theory, geometry, and linear algebra. His legal knowledge was very valuable
to Cambridge; he participated in the writing of many of the university’s statutes. Cayley
was also one of the people responsible for the admission of women to Cambridge.

8.2 Direct Products

Given two groups G and H, it is possible to construct a new group from the Carte-
sian product of G and H, G x H. Conversely, given a large group, it is sometimes



128 ISOMORPHISMS

possible to decompose the group; that is, a group is sometimes isomorphic to the
direct product of two smaller groups. Rather than studying a large group G, it is
often easier to study the component groups of G.

External Direct Products

If (G,-) and (H, o) are groups, then we can make the Cartesian product of G and
H into a new group. As a set, our group is just the ordered pairs (g, h) € G x H
where g € G and h € H. We can define a binary operation on G x H by

(gl, h1)(92)h2) = (g1 * 925 hyo hz);

that is, we just multiply elements in the first coordinate as we do in G and ele-
ments in the second coordinate as we do in H. We have specified the particular
operations - and o in each group here for the sake of clarity; we usually just write

(91, hl)(gz, hz) = (glgz, hlhz)-

Proposition 8.7. Let G and H be groups. The set G x H is a group under the
operation (gi, h1) (g2, h2) = (9192, hihy) where g1, g, € G and hy, h; € H.

Proof. Clearly the binary operation defined above is closed. If e and ey are
the identities of the groups G and H respectively, then (eg, epr) is the identity of
G x H. The inverse of (g, h) € G x His (g~!, h™"!). The fact that the operation is
associative follows directly from the associativity of G and H. ]

Example 7. Let R be the group of real numbers under addition. The Cartesian
product of R with itself, R x R = R?, is also a group, in which the group operation
is just addition in each coordinate; that is, (a,b) + (¢,d) = (a + ¢,b + d). The
identity is (0, 0) and the inverse of (a, b) is (—a, -b).

Example 8. Consider
Z,x Z, ={(0,0),(0,1),(1,0),(1,1)}.

Although Z, x Z, and Z4 both contain four elements, it is easy to see that they are
not isomorphic since for every element (a, b) in Z, x Z,, (a,b) + (a,b) = (0,0),
but Z, is cyclic.

The group G x H is called the external direct product of G and H. Notice that
there is nothing special about the fact that we have used only two groups to build
a new group. The direct product

[[Gi=GixGyx-xG,

i=1
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of the groups G, G, . .., G, is defined in exactly the same manner. If G = G; =
G, = --- = G,, we often write G" instead of G; x G, x - x G,,.

Example 9. The group Z5, considered as a set, is just the set of all binary n-tuples.

The group operation is the “exclusive or” of two binary n-tuples. For example,
(01011101) + (01001011) = (00010110).

This group is important in coding theory, in cryptography, and in many areas of

computer science.

Theorem 8.8. Let (g, h) € G x H. If g and h have finite orders r and s respectively,
then the order of (g, h) in G x H is the least common multiple of r and s.

Proof. Suppose that m is the least common multiple of r and s and let n = |(g, h)|.

Then
(g:m)™ = (g™ h") = (ec, en)
(9" h") = (g, h)" = (g, en)-
Hence, n must divide m, and n < m. However, by the second equation, both r

and s must divide n; therefore, n is a common multiple of  and s. Since m is the
least common multiple of r and s, m < n. Consequently, mm must be equalto n. m

Corollary 8.9. Let (g1,...,9x) € [1G;. If g; has finite order r; in G;, then the
order of (gi, ..., gn) in [1 G; is the least common multiple of r1, ..., 7,,.

Example 10. Let (8,56) € Zjp x Zgo. Since gcd(8,12) = 4, the order of 8 is
12/4 = 3 in Z,,. Similarly, the order of 56 in Zgy is 15. The least common multiple
of 3 and 15 is 15; hence, (8,56) has order 15 in Z1, x Zg.

Example 11. The group Z, x Z; consists of the pairs

0,0), (0,1, (0,2), (1,0), (L1), (12).

In this case, unlike that of Z, x Z, and Z4, it is true that Z, x Z3 = Z¢. We need
only show that Z, x Z3 is cyclic. It is easy to see that (1,1) is a generator for Z, x Z.

The next theorem tells us exactly when the direct product of two cyclic groups
is cyclic.
Theorem 8.10. The group Z,, xZ, isisomorphicto Z,,, ifand onlyif gcd(m, n) =
1.

Proof. Assume first thatif Z,,, x Z,, 2 Z,,,,, then ged(m, n) = 1. To show this, we
will prove the contrapositive; that is, we will show that if gcd(m, n) = d > 1, then
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Z, x Z,, cannot be cyclic. Notice that mn/d is divisible by both m and #; hence,
for any element (a,b) € Z,, x Z,,,

(a,b) + (a,b) + -+ (a,b) = (0,0).

mn/d times

Therefore, no (a, b) can generate all of Z,,, x Z,,.
The converse follows directly from Theorem 8.8 since lem(m, n) = mn if and
only if gcd(m, n) = L. ]

Corollary 8.11. Let ny,. .., nj be positive integers. Then

Ly, =Ly,

k
ic1

if and only if gcd(n;, n;) = 1for i # j.

Corollary 8.12. If m = p{'---p;*, where the p;s are distinct primes, then

Ly ZPfl X oo X szk.

Proof. Since the greatest common divisor of p;’ and p;j is 1 for i # j, the proof
follows from Corollary 8.11. ]

In Chapter 11, we will prove that all finite abelian groups are isomorphic to
direct products of the form

ep X oo+ X e
Zpll Zpkk

where p;, ..., px are (not necessarily distinct) primes.

Internal Direct Products

The external direct product of two groups builds a large group out of two smaller

groups. We would like to be able to reverse this process and conveniently break

down a group into its direct product components; that is, we would like to be able

to say when a group is isomorphic to the direct product of two of its subgroups.
Let G be a group with subgroups H and K satisfying the following conditions.

e« G=HK={hk:heH,keK};

¢« HNK = {6 };

o hk =khforallke Kand h € H.

Then G is the internal direct product of H and K.
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Example 12. The group U(8) is the internal direct product of

H={1,3}
K ={1,5}.

Example 13. The dihedral group Ds is an internal direct product of its two sub-
groups

H = {id,r}

K = {id,r*, r*,s,r%s, r's}.
It can easily be shown that K = S3; consequently, Dg = Z; x Ss.

Example 14. Not every group can be written as the internal direct product of
two of its proper subgroups. If the group S; were an internal direct product of
its proper subgroups H and K, then one of the subgroups, say H, would have to
have order 3. In this case H is the subgroup {(1), (123), (132) }. The subgroup K
must have order 2, but no matter which subgroup we choose for K, the condition
that hk = kh will never be satisfied for # € H and k € K.

Theorem 8.13. Let G be the internal direct product of subgroups H and K. Then
G is isomorphic to H x K.

Proof. Since G is an internal direct product, we can write any element g € G
as g = hk for some h € H and some k € K. Defineamap ¢ : G - H x K by

8(9) = (h. ).
The first problem that we must face is to show that ¢ is a well-defined map;
that is, we must show that 4 and k are uniquely determined by g. Suppose that
g =hk=hk'.Then h™'h’ = k(k") " is in both H and K, so it must be the identity.
Therefore, h = h’ and k = k', which proves that ¢ is, indeed, well-defined.
To show that ¢ preserves the group operation, let g; = h1k; and g, = hyk; and

observe that
$(9192) = $(hkihzkz)
= ¢(hihakiksy)
= (hth)klkZ)
= (h1, k1) (ha, k2)
= ¢(g1)¢(92)-

We will leave the proof that ¢ is one-to-one and onto as an exercise. ]

Example 15. The group Z; is an internal direct product isomorphic to {0, 2,4} x
{0,3}.

We can extend the definition of an internal direct product of G to a collection
of subgroups Hy, H,, ..., H, of G, by requiring that
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o G= H1H2"'Hn = {h]hz"'hn : h,’ € H,'};

] H,»m(uj#Hj):{e};

. hil’lj:hjhi forallhieHi andhjeH]-.

We will leave the proof of the following theorem as an exercise.

Theorem 8.14. Let G be the internal direct product of subgroups H;, where
i=12,...,n. Then G is isomorphic to []; H;.

Exercises

1. Prove that Z =~ nZ for n # 0.

2. Prove that C* is isomorphic to the subgroup of GL,(R) consisting of matrices of the
form
a b
-b a )’
4. Prove that U(8) is isomorphic to the group of matrices

)G )

. Show that U(5) is isomorphic to U(10), but U(12) is not.
. Show that the nth roots of unity are isomorphic to Z,.

3. Prove or disprove: U(8) 2 Z4.

. Show that any cyclic group of order # is isomorphic to Z,.

. Prove that @ is not isomorphic to Z.

O o NN O W

. Let G = R\ {-1} and define a binary operation on G by
axb=a+b+ab.

Prove that G is a group under this operation. Show that (G, *) is isomorphic to the
multiplicative group of nonzero real numbers.

10. Show that the matrices

1 0 O 1 0 O 01 0
0 1 0 0 0 1 1 0 O
0 0 1 0 1 0 0 0 1
0 0 1 0 0 1 01 0
1 0 0 01 0 0 0 1
01 0 1 0 0 1 0 0

form a group. Find an isomorphism of G with a more familiar group of order 6.
11. Find five non-isomorphic groups of order 8.

12. Prove Sy is not isomorphic to Di,.
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13. Let w = cis (27i/n) be a primitive nth root of unity. Prove that the matrices

and

form a multiplicative group isomorphic to D,.

14. Show that the set of all matrices of the form

where n € Z,,, is a group isomorphic to D,,.
15. List all of the elements of Z4 x Z,.
16. Find the order of each of the following elements.
(@) (3,4)inZ4 x Zs
(b) (6,15,4) in Z3 X Z4s x Z24
(c) (5,10,15) in Zz5 x Zp5 x Z35
(d) (8, 8,8) in Zyy X Zy4 X Zgg
17. Prove that D4 cannot be the internal direct product of two of its proper subgroups.

18. Prove that the subgroup of Q" consisting of elements of the form 23" for m,n € Z is
an internal direct product isomorphic to Z x Z.

19. Prove that S3 x Z, is isomorphic to Ds. Can you make a conjecture about D,,,? Prove
your conjecture. [Hint: Draw the picture.]

20. Prove or disprove: Every abelian group of order divisible by 3 contains a subgroup of
order 3.

21. Prove or disprove: Every nonabelian group of order divisible by 6 contains a subgroup
of order 6.

22. Let G be a group of order 20. If G has subgroups H and K of orders 4 and 5 respectively
such that hk = kh for all h € H and k € K, prove that G is the internal direct product of
Hand K.

23. Prove or disprove the following assertion. Let G, H, and K be groups. If G xK 2 Hx K,
then G = H.

24. Prove or disprove: There is a noncyclic abelian group of order 51.

25. Prove or disprove: There is a noncyclic abelian group of order 52.

26. Let ¢ : Gi = G, be a group isomorphism. Show that ¢(x) = e ifand only if x = e.
27. Let G = H. Show that if G is cyclic, then so is H.

28. Prove that any group G of order p, p prime, must be isomorphic to Z,.

29. Show that S, is isomorphic to a subgroup of A,,.

30. Prove that D, is isomorphic to a subgroup of S,.
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31. Let ¢ : Gi = Gz and y : G2 - G3 be isomorphisms. Show that ¢71 and y o ¢ are both
isomorphisms. Using these results, show that the isomorphism of groups determines an
equivalence relation on the class of all groups.

32. Prove U(5) = Z4. Can you generalize this result to show that U(p) = Z,_,?

33. Write out the permutations associated with each element of S3 in the proof of Cayley’s
Theorem.

34. An automorphism of a group G is an isomorphism with itself. Prove that complex
conjugation is an automorphism of the additive group of complex numbers; that is,
show that the map ¢(a + bi) = a — bi is an isomorphism from C to C.

35. Prove that a + ib — a — ib is an automorphism of C*.
36. Prove that A +> B™'AB is an automorphism of SL,(R) for all B in GL,(R).

37. We will denote the set of all automorphisms of G by Aut(G). Prove that Aut(G) is a
subgroup of Sg, the group of permutations of G.

38. Find Aut(Zs).
39. Find Aut(Z).
40. Find two nonisomorphic groups G and H such that Aut(G) = Aut(H).

41. Let Gbeagroupand g € G. Defineamap iy : G — G by iz(x) = gxg ™. Prove that i
defines an automorphism of G. Such an automorphism is called an inner automorphism.
The set of all inner automorphisms is denoted by Inn(G).

42. Prove that Inn(G) is a subgroup of Aut(G).

43. What are the inner automorphisms of the quaternion group Qs? Is Inn(G) = Aut(G)
in this case?

44. Let Gbeagroupand g € G. Definemaps A, : G -~ Gand p,: G > G by A4(x) = gx
and py(x) = xg~". Showthat iy = psol, is an automorphism of G. Themap p, : G - G
is called the right regular representation of G.

45. Let G be the internal direct product of subgroups H and K. Show that the map
¢ : G - H x K defined by ¢(g) = (h,k) for g = hk, where h € Hand k € K, is

one-to-one and onto.

46. Let G and H be isomorphic groups. If G has a subgroup of order #, prove that H must
also have a subgroup of order n.

47. fG=Gand H = H, show that G x H= G x H.
48. Prove that G x H is isomorphic to H x G.
49. Let ny, ..., ny be positive integers. Show that

k
H Zu; 2 Ly,

i=1

if and only if ged(n;, nj) = 1for i # j.
50. Prove that A x B is abelian if and only if A and B are abelian.

51. If G is the internal direct product of Hi, H,, ..., Hy, prove that G is isomorphic to
I1; Hi.
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52. Let H, and H> be subgroups of G; and G, respectively. Prove that H; x H, is a subgroup
of G1 X Gz.

53. Let m,n € Z. Prove that (m, n) = (d) ifand only if d = ged(m, n).
54. Let m,n € Z. Prove that (m) n (n) = (1) if and only if d = lcm(m, n).
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Homomorphisms and Factor

Groups

f H is a subgroup of a group G, then right cosets are not always the same

as left cosets; that is, it is not always the case that gH = Hg for all g € G.

The subgroups for which this property holds play a critical role in group theory:

they allow for the construction of a new class of groups, called factor or quotient

groups. Factor groups may be studied by using homomorphisms, a generalization
of isomorphisms.

9.1 Factor Groups and Normal Subgroups

Normal Subgroups

A subgroup H of a group G is normal in G if gH = Hg for all g € G. That is, a
normal subgroup of a group G is one in which the right and left cosets are precisely
the same.

Example 1. Let G be an abelian group. Every subgroup H of G is a normal
subgroup. Since gh = hg for all g € G and h € H, it will always be the case that
gH =Hg.

Example 2. Let H be the subgroup of S; consisting of elements (1) and (12).
Since
(123)H = {(123), (13)}

and
H(123) = {(123), (23)},

H cannot be a normal subgroup of S;. However, the subgroup N, consisting of
the permutations (1), (123), and (132), is normal since the cosets of N are

N = {(1), (123), (132)}
(12)N = N(12) = {(12), (13), (23) ).

The following theorem is fundamental to our understanding of normal sub-
groups.
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Theorem 9.1. Let G be a group and N be a subgroup of G. Then the following
statements are equivalent.

1. The subgroup N is normal in G.

2. Forallge G, gNg™' c N.

3. Forallge G, gNg™' = N.

Proof. (1) = (2). Since N is normal in G, gN = Ng for all g € G. Hence, for a
given g € G and n € N, there exists an n’ in N such that gn = n’g. Therefore,
gngt=n"eNorgNg™cN.

(2) = (3). Let g € G. Since gNg™! c N, we need only show N c gNg~". For
neN,g'ng=g"'n(g")" € N. Hence, g 'ng = n’ for some n’ € N. Therefore,
n=gn'glisin gNg™.

(3) = (1). Suppose that gNg™' = N for all g € G. Then for any n € N there
exists an n’ € N such that gng™ = n’. Consequently, gn = n’g or gN c Ng.
Similarly, Ng c gN. u

Factor Groups

If N is a normal subgroup of a group G, then the cosets of N in G form a group
G/N under the operation (aN)(bN) = abN. This group is called the factor or
quotient group of G and N. Our first task is to prove that G/N is indeed a group.

Theorem 9.2. Let N be a normal subgroup of a group G. The cosets of N in G
form a group G/N of order [G : N].

Proof. The group operation on G/N is (aN)(bN) = abN. This operation must
be shown to be well-defined; that is, group multiplication must be independent
of the choice of coset representative. Let aN = bN and ¢cN = dN. We must show
that

(aN)(cN) = acN = bdN = (bN)(dN).

Then a = bn; and ¢ = dn, for some n; and #n, in N. Hence,

acN = bnidn, N
=bmdN
=bn;Nd
=bNd
= bdN.

The remainder of the theorem is easy: eN = N is the identity and g~'N is the
inverse of gN. The order of G/N is, of course, the number of cosets of Nin G.

It is very important to remember that the elements in a factor group are sets
of elements in the original group.
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Example 3. Consider the normal subgroup of S3, N = {(1), (123), (132) }. The
cosets of N in S; are N and (12)N. The factor group S3/N has the following
multiplication table.

‘ N  (12)N

N N (12)N
(2)N| (12)N N
This group is isomorphic to Z,. At first, multiplying cosets seems both complicated
and strange; however, notice that S;/N is a smaller group. The factor group
displays a certain amount of information about Ss. Actually, N = A3, the group of
even permutations, and (12)N = {(12), (13), (23) } is the set of odd permutations.
The information captured in G/N is parity; that is, multiplying two even or two
odd permutations results in an even permutation, whereas multiplying an odd
permutation by an even permutation yields an odd permutation.

Example 4. Consider the normal subgroup 3Z of Z. The cosets of 3Z in Z are

0+3Z=1{...,-3,0,3,6,...}
143Z2={...,-2,1,4,7,...}
2+3Z2={...,-1,2,5,8,...}.

The group Z/3Z is given by the multiplication table below.

+ ‘0+3z 1+3Z 2+37

0+3Z|0+3Z 1+37Z 2+37
1437 | 1+37Z 2+37Z 0+37
2+37Z | 2+3Z 0+3Z 1+3Z

In general, the subgroup nZ of Z is normal. The cosets of Z/nZ are

nZz
1+n”Z
2+nZ

(n-1)+nZ.

The sum of the cosets k + Z and [ + Z is k + [ + Z. Notice that we have written
our cosets additively, because the group operation is integer addition.
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Example 5. Consider the dihedral group D, generated by the two elements r
and s, satisfying the relations

M=id, s*=id, and srs=r".
The element r actually generates the cyclic subgroup of rotations, R,, of D,,.
Since srs™! = srs = r! € R,,, the group of rotations is a normal subgroup of D,;
therefore, D,,/R,, is a group. Since there are exactly two elements in this group, it
must be isomorphic to Z,.

9.2 Group Homomorphisms

One of the basic ideas of algebra is the concept of a homomorphism, a natural gen-
eralization of an isomorphism. If we relax the requirement that an isomorphism
of groups be bijective, we have a homomorphism. A homomorphism between
groups (G, ) and (H,0) isamap ¢ : G - H such that

¢(g1- 92) = ¢(a1) © $(92)

for g1, g, € G. The range of ¢ in H is called the homomorphic image of ¢.

Two groups are related in the strongest possible way if they are isomorphic;
however, a weaker relationship may exist between two groups. For example, the
symmetric group S,, and the group Z, are related by the fact that S,, can be divided
into even and odd permutations that exhibit a group structure like that Z,, as
shown in the following multiplication table.

‘ even odd

even | even odd
odd | odd even

We use homomorphisms to study relationships such as the one we have just
described.

Example 6. Let G be a group and g € G. Defineamap ¢ : Z - G by ¢(n) = g".
Then ¢ is a group homomorphism, since

$(m+n)=g"" =g"g" = $(m)p(n).
This homomorphism maps Z onto the cyclic subgroup of G generated by g.
Example 7. Let G = GL,(R). If

(1)
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is in G, then the determinant is nonzero; that is, det(A) = ad — bc # 0. Also, for
any two elements A and B in G, det(AB) = det(A) det(B). Using the determinant,
we can define a homomorphism ¢ : GL,(R) - R* by A ~ det(A).

Example 8. Recall that the circle group T consists of all complex numbers z such
that |z| = 1. We can define a homomorphism ¢ from the additive group of real
numbers Rto T by ¢ : 6 +— cos 8 + i sin 6. Indeed,

¢(a+ ) = cos(a + f) + isin(a + fB)
= (cosacosff —sinasin B) + i(sin a cos § + cos a sin f3)
=(cosa+isina) + (cos +isinf)
= ¢(a)$(B).

Geometrically, we are simply wrapping the real line around the circle in a group-
theoretic fashion.

The following proposition lists some basic properties of group homomor-
phisms.

Proposition 9.3. Let ¢ : G; = G, be a homomorphism of groups. Then
1. If e is the identity of G, then ¢(e) is the identity of G,;

2. Forany element g € Gy, $(g7") = [¢(9)]7}
3. If Hy is a subgroup of Gy, then ¢(Hy) is a subgroup of G;

4. If Hy is a subgroup of G,, then ¢ "'(H,) = {g € G : ¢(g) € H,} is a subgroup
of Gy. Furthermore, if Hy is normal in Gy, then ¢ *(H,) is normal in G.

Proof. (1) Suppose that e and e’ are the identities of G; and G,, respectively; then

e'¢(e) = ¢(e) = g(ee) = g(e)¢p(e).

By cancellation, ¢(e) = e’
(2) This statement follows from the fact that

¢(g7)o(9) = ¢(97'g) = ¢(e) = e.

(3) The set ¢(H;) is nonempty since the identity of H; is in ¢ (H; ). Suppose
that H; is a subgroup of G; and let x and y be in ¢(H;). There exist elements
a,b € Hy such that ¢(a) = x and ¢(b) = y. Since

xy™ = ¢(a)[¢(b)]™ = ¢(ab™) € (Hh),

¢(H,) is a subgroup of G, by Proposition 2.10.
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(4) Let H, be a subgroup of G, and define H, to be ¢! (H,); that is, H, is the
set of all g € G; such that ¢(g) € H,. The identity is in H; since ¢(e) = e. If a
and b are in H, then ¢(ab™") = ¢(a)[¢(b)] ™" is in H, since H, is a subgroup of
G,. Therefore, ab™' € H, and H, is a subgroup of G,. If H, is normal in G,, we
must show that g™'hg € H; for h € H; and g € G;. But

$(g7'hg) = [6(9)]'$(h)$(g) € Ha,

since H, is a normal subgroup of G,. Therefore, g~'hg € H;. ]

Let ¢ : G — H be a group homomorphism and suppose that e is the identity
of H. By Proposition 9.3, ¢~ ({e}) is a subgroup of G. This subgroup is called
the kernel of ¢ and will be denoted by ker ¢. In fact, this subgroup is a normal
subgroup of G since the trivial subgroup is normal in H. We state this result in
the following theorem, which says that with every homomorphism of groups we
can naturally associate a normal subgroup.

Theorem 9.4. Let ¢ : G — H be a group homomorphism. Then the kernel of ¢ is
a normal subgroup of G.

Example 9. Let us examine the homomorphism ¢ : GL,(R) - R* defined by
A~ det(A). Since 1 is the identity of R*, the kernel of this homomorphism is all
2 x 2 matrices having determinant one. That is, ker ¢ = SL,(R).

Example 10. The kernel of the group homomorphism ¢ : R — C* defined by
¢(0) =cos B +isinfis {27n : n € Z}. Notice that ker ¢ = Z.

Example 11. Suppose that we wish to determine all possible homomorphisms ¢
from Z; to Z;;. Since the kernel of ¢ must be a subgroup of Z;, there are only
two possible kernels, {0} and all of Z;. The image of a subgroup of Z; must be
a subgroup of Z;,. Hence, there is no injective homomorphism; otherwise, Z,,
would have a subgroup of order 7, which is impossible. Consequently, the only
possible homomorphism from Z; to Z;; is the one mapping all elements to zero.

Example 12. Let G be a group. Suppose that g € G and ¢ is the homomorphism
from Z to G given by ¢(n) = g". If the order of g is infinite, then the kernel of this
homomorphism is {0} since ¢ maps Z onto the cyclic subgroup of G generated
by g. However, if the order of g is finite, say n, then the kernel of ¢ is nZ.

Simplicity of A,

Of special interest are groups with no nontrivial normal subgroups. Such groups
are called simple groups. Of course, we already have a whole class of examples of
simple groups, Z,, where p is prime. These groups are trivially simple since they
have no proper subgroups other than the subgroup consisting solely of the identity.
Other examples of simple groups are not so easily found. We can, however, show
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that the alternating group, A,, is simple for n > 5. The proof of this result requires
several lemmas.

Lemma 9.5. The alternating group A, is generated by 3-cycles for n > 3.

Proof. To show that the 3-cycles generate A,, we need only show that any pair of
transpositions can be written as the product of 3-cycles. Since (ab) = (ba), every
pair of transpositions must be one of the following:

(ab)(ab) = id
(ab)(cd) = (acb)(acd)
(ab)(ac) = (acbh). ]

Lemma 9.6. Let N be a normal subgroup of A,, where n > 3. If N contains a
3-cycle, then N = A,,.

Proof. We will first show that A, is generated by 3-cycles of the specific form
(ijk), where i and j are fixed in {1,2, ..., n} and we let k vary. Every 3-cycle is
the product of 3-cycles of this form, since

(iaj) = (ija)’

(iab) = (ijb)(ija)*

(jab) = (ijb)* (ija)

(abe) = (ija)*(ije)(ijb)’ (ija).
Now suppose that N is a nontrivial normal subgroup of A, for n > 3 such that N
contains a 3-cycle of the form (ija). Using the normality of N, we see that

[(ij)(ak)](ija)*[(ij)(ak)] ™ = (ijk)

is in N. Hence, N must contain all of the 3-cycles (ijk) for1 < k < n. By
Lemma 9.5, these 3-cycles generate A,,; hence, N = A,,. ]

Lemma 9.7. For n > 5, every normal subgroup N of A, contains a 3-cycle.

Proof. Let o be an arbitrary element in a normal subgroup N. There are several
possible cycle structures for o.

o oisas-cycle.
o 0 is the product of disjoint cycles, 0 = 7(aja,---a,) € N, where r > 3.
« 0 is the product of disjoint cycles, 0 = 7(a1a,a3)(asasas).

o 0 = 7(ajaza3), where 7 is the product of disjoint 2-cycles.
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o 0 = 1(a1a;)(asay), where 7 is the product of an even number of disjoint
2-cycles.
If 0 is a 3-cycle, then we are done. If N contains a product of disjoint cycles, o,
and at least one of these cycles has length greater than 3, say o = 7(a1a;:--a,),
then
(a1a2a3)a(a1a2a3)_l

isin N since N is normal; hence,
-1 -1
o (a1a2a3)0(a1a2a3)
is also in N. Since

o Naaza3)0(aazas)™

= 0 Y (a1a2a3)0(a1asa,)

= (may—a,) ‘v ayaza3) 1(araz--a, ) (ayazaz)
= (a1a,a,-1--a)(ar1a,a3)(ara,--a,) (a1asay)
=(aasa,),

N must contain a 3-cycle; hence, N = A,,.
Now suppose that N contains a disjoint product of the form

o = 1(a1a2a3)(asasag).

Then
o (amazas)o(aazas) €N
since
(amaza4)0(arazas) " € N.
So

o Nayaza,)0(a1aza,)™"

= [t(a1a2a3) (asasag)] " (ar1a,a4)1(a1a2a3) (agasae) (arazas) ™
= (agagas)(ayaza;) v " (araza4)1(araza3) (agasae) (a1asaz)

= (asa6as)(mazay)(a1a2a4)(a1a2a3)(asasa6)(a1a4a;)

= (a1a4a,2a60a3).

So N contains a disjoint cycle of length greater than 3, and we can apply the
previous case.
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Suppose N contains a disjoint product of the form o = 7(aja,as3), where 7 is
the product of disjoint 2-cycles. Since o € N, 6% € N, and

0'2 = T(a1a2a3)‘r(a1a2a3)

= ((11613612).

So N contains a 3-cycle.
The only remaining possible case is a disjoint product of the form

o =1(may)(azay),
where 7 is the product of an even number of disjoint 2-cycles. But
0_1(a1a2a3)0(a1a2a3)_1
isin N since (a;a;2a3)0(a1a,a3) " isin N; and so

o Nayaza3)0(a1aza3)™
= T_l(alaz)(a3a4)(a1a2a3)T(alaz)(a3a4)(a1a2a3)_1
= (a1a3)(a2a4).
Since n > 5, we can find b € {1,2,...,n} such that b # aj,a,4a3,a4. Let y =
(a1a3b). Then
y’l(alag)(a2a4)y(a1a3)(a2a4) eN

and
w7 (a1a3) (a2a4) p(a103) (a204)
= (a1bas)(a1a3)(azaq)(ajasb)(aras)(azas)
= (a1a3b).
Therefore, N contains a 3-cycle. This completes the proof of the lemma. ]

Theorem 9.8. The alternating group, A, is simple for n > 5.

Proof. Let N be a normal subgroup of A,. By Lemma 9.7, N contains a 3-cycle.
By Lemma 9.6, N = A,; therefore, A, contains no proper nontrivial normal
subgroups for n > 5. ]

Historical Note

One of the foremost problems of group theory has been to classify all simple finite groups.
This problem is over a century old and has been solved only in the last few years. In a sense,
finite simple groups are the building blocks of all finite groups. The first nonabelian simple
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groups to be discovered were the alternating groups. Galois was the first to prove that As
was simple. Later mathematicians, such as C. Jordan and L. E. Dickson, found several
infinite families of matrix groups that were simple. Other families of simple groups were
discovered in the 1950s. At the turn of the century, William Burnside conjectured that all
nonabelian simple groups must have even order. In 1963, W. Feit and J. Thompson proved
Burnside’s conjecture and published their results in the paper “Solvability of Groups of
Odd Order;” which appeared in the Pacific Journal of Mathematics. Their proof, running
over 250 pages, gave impetus to a program in the 1960s and 1970s to classify all finite simple
groups. Daniel Gorenstein was the organizer of this remarkable effort. One of the last
simple groups was the “Monster;” discovered by R. Greiss. The Monster, a 196,833 x 196,833
matrix group, is one of the 26 sporadic, or special, simple groups. These sporadic simple
groups are groups that fit into no infinite family of simple groups.

9.3 The Isomorphism Theorems

Though at first it is not evident that factor groups correspond exactly to homo-
morphic images, we can use factor groups to study homomorphisms. We already
know that with every group homomorphism ¢ : G — H we can associate a normal
subgroup of G, ker ¢; the converse is also true. Every normal subgroup of a group
G gives rise to homomorphism of groups.

Let H be a normal subgroup of G. Define the natural or canonical homomor-
phism ¢ : G = G/H by ¢(g) = gH. This is indeed a homomorphism, since

$(9192) = 919:H = giHg: H = ¢(91) $(92)-

The kernel of this homomorphism is H. The following theorems describe the rela-
tionships among group homomorphisms, normal subgroups, and factor groups.

Theorem 9.9 (First Isomorphism Theorem). If y : G - H is a group homomor-
phism with K = ker y, then K is normal in G. Let ¢ : G - G/K be the canonical
homomorphism. Then there exists a unique isomorphism # : G/K - y(G) such

that v = n¢.

Proof. We already know that K is normal in G. Define 1 : G/K - y(G) by
1(gK) = w(g). We must first show that this is a well-defined map. Suppose that
giK = ;K. For some k € K, gik = g»; consequently,

n(aK) =v(q) = y(g)y(k) = y(gik) = y(g2) = n(g:2K).

Since 7(g1K) = 1(g2K), 1 does not depend on the choice of coset representative.
Clearly # is onto y(G). To show that # is one-to-one, suppose that (g K) =
1(92K). Then y(g1) = w(gz). This implies that y(g;'g2) = e, or g; ' gz is in the
kernel of y; hence, g;'¢,K = K; that is, g;K = g, K. Finally, we must show that 7
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is a homomorphism, but

1(91Kg:K) = n(919:K)
=y(g192)
=y(g1)v(g2)
= 1(aK)n(g2K). L]

Mathematicians often use diagrams called commutative diagrams to describe
such theorems. The following diagram “commutes” since y = 1¢.

v

N

G/K

G H

Example 13. Let G be a cyclic group with generator g. Defineamap ¢: Z - G
by n — g”. This map is a surjective homomorphism since

$(m+n)=g""=g"g" = ¢(m)$(n).

Clearly ¢ is onto. If |g| = m, then g™ = e. Hence, ker ¢ = mZ and Z/ker ¢ =
Z/mZ = G. On the other hand, if the order of g is infinite, then ker ¢ = 0 and ¢
is an isomorphism of G and Z. Hence, two cyclic groups are isomorphic exactly
when they have the same order. Up to isomorphism, the only cyclic groups are Z
and Z,,.

Theorem 9.10 (Second Isomorphism Theorem). Let H be a subgroup of a group
G (not necessarily normal in G) and N a normal subgroup of G. Then HN is a
subgroup of G, H N N is a normal subgroup of H, and

H/HNN = HN/N.

Proof. We will first show that HN = {hn : h € H,n € N} is a subgroup of G.
Suppose that hyny, hyn, € HN. Since N is normal, (k) 'nih, € N. So

(hm)(hany) = hihy((h) 'mihy)ny
isin HN. The inverse of hn € HN 1is in HN since

(k) =nth =k (hn R,
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Next, we prove that Hn N is normal in H. Let h € H and n € Hn N. Then
h™'nh € H since each element is in H. Also, h™'nh € N since N is normal in G;
therefore, h 'nh € Hn N.

Now define a map ¢ from H to HN/N by h — hN. The map ¢ is onto,
since any coset hinN = hN is the image of h in H. We also know that ¢ is a
homomorphism because

¢(hh") = hh'N = hNKW'N = ¢(h)¢(h").

By the First Isomorphism Theorem, the image of ¢ is isomorphic to H/ ker ¢; that

is,
HN/N = ¢(H) = H/ ker ¢.

Since
ker¢ ={heH:heN}=HnN,

HN/N = ¢(H) = H/HN N. "

Theorem 9.11 (Correspondence Theorem). Let N be a normal subgroup of a
group G. Then H — H/N is a one-to-one correspondence between the set of
subgroups H containing N and the set of subgroups of G/N. Furthermore, the
normal subgroups of H correspond to normal subgroups of G/N.

Proof. Let H be a subgroup of G containing N. Since N is normal in H, H/N
makes sense. Let aN and bN be elements of H/N. Then (aN)(b™'N) = ab™'N ¢
H/N; hence, H/N is a subgroup of G/N.

Let S be a subgroup of G/N. This subgroup is a set of cosets of N. If H =
{g € G : gN € S}, then for hy, h, € H, we have that (l)N)(h,N) = hh'N € S
and h;'N € S. Therefore, H must be a subgroup of G. Clearly, H contains N.
Therefore, S = H/N. Consequently, the map H » H/H is onto.

Suppose that H; and H, are subgroups of G containing N such that H;/N =
H,/N.If h; € Hy, then hyN € H;/N. Hence, h1N = h,N c H, for some h; in H,.
However, since N is contained in H,, we know that h; € H, or H; ¢ H,. Similarly,
H, c H,. Since H; = H,, the map H ~ H/H is one-to-one.

Suppose that H is normal in G and N is a subgroup of H. Then it is easy to
verify that the map G/N — G/H defined by gN — gH is a homomorphism. The
kernel of this homomorphism is H/N, which proves that H/N is normal in G/N.

Conversely, suppose that H/N is normal in G/N. The homomorphism given
by

G/N

G- G/N > ——

has kernel H. Hence, H must be normal in G. [ ]
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Notice that in the course of the proof of Theorem 9.11, we have also proved
the following theorem.

Theorem 9.12 (Third Isomorphism Theorem). Let G be a group and N and H be
normal subgroups of G with N c H. Then

G/N

G/H = HIN'

Example 14. By the Third Isomorphism Theorem,
Z/mZ = (Z]mnZ)|(mZ/mnZ).
Since |Z/mnZ| = mn and |Z/mZ| = m, we have |mZ/mnZ| = n.

Exercises

1. For each of the following groups G, determine whether H is a normal subgroup of G.
If H is a normal subgroup, write out a Cayley table for the factor group G/H.
(@) G=Ssand H = A4
(b) G=Asand H = {(1), (123), (132)}
(c) G=S4and H= D,
(d G=Qsand H={1,-1,i,-i}
() G=Zand H=5Z

2. Find all the subgroups of D4. Which subgroups are normal? What are all the factor
groups of D4 up to isomorphism?

3. Find all the subgroups of the quaternion group, Qs. Which subgroups are normal?
What are all the factor groups of Q4 up to isomorphism?

4. Prove that det(AB) = det(A) det(B) for A, B € GL,(R). This shows that the determi-
nant is a homomorphism from GL,(R) to R*.

5. Which of the following maps are homomorphisms? If the map is a homomorphism,
what is the kernel?
(@) ¢:R* — GLy(R) defined by

o -5 o)

(b) ¢:R — GLy(R) defined by
¢(a):( b )

() ¢:GLy(R) - R defined by
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(d) ¢:GL(R) — R* defined by
A2 )

(e) ¢:M;(R) - R defined by
a b
((05))-

where M, (R) is the additive group of 2 x 2 matrices with entries in R.

6. Let T be the group of nonsingular upper triangular 2 x 2 matrices with entries in R;
that is, matrices of the form
a b
(5 )

where a, b, c € Rand ac # 0. Let U consist of matrices of the form

1 x
o 1)
where x € R.

(a) Show that U is a subgroup of T.
(b) Prove that U is abelian.
(c) Prove that U is normal in T.
(d) Show that T/U is abelian.
(e) Is T normal in GL,(R)?
7. Let Abe an m x n matrix. Show that matrix multiplication, x — Ax, defines a homo-
morphism ¢ : R" - R™.
8. Let ¢ : Z — Z be given by ¢(n) = 7n. Prove that ¢ is a group homomorphism. Find
the kernel and the image of ¢.
9. Describe all of the homomorphisms from Z,4 to Z;s.
10. Describe all of the homomorphisms from Z to Z1,.
11. In the group Z,4,let H = (4) and N = (6).

(a) List the elements in HN (we usually write H + N for these additive groups) and
HnNN.

(b) List the cosets in HN/N, showing the elements in each coset.
(c) List the cosets in H/(H n N), showing the elements in each coset.

(d) Give the correspondence between HN/N and H/(H n N described in the proof
of the Second Isomorphism Theorem.

12. If G is an abelian group and n € N, show that ¢ : G — G defined by g — g" is a group
homomorphism.

13. Show that the intersection of two normal subgroups is a normal subgroup.
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14. If ¢ : G — H is a group homomorphism and G is abelian, prove that ¢(G) is also
abelian.

15. If ¢ : G » H is a group homomorphism and G is cyclic, prove that ¢(G) is also cyclic.

16. Show that a homomorphism defined on a cyclic group is completely determined by
its action on the generator of the group.

17. If G is abelian, prove that G/H must also be abelian.

18. Prove or disprove: If H is a normal subgroup of G such that H and G/H are abelian,
then G is abelian.

19. If G is cyclic, prove that G/H must also be cyclic.
20. Prove or disprove: If H and G/H are cyclic, then G is cyclic.

21. Let H be a subgroup of index 2 of a group G. Prove that H must be a normal subgroup
of G. Conclude that S, is not simple.

22. Let G be a group of order p?, where p is a prime number. If H is a subgroup of G of
order p, show that H is normal in G. Prove that G must be abelian.

23. Ifagroup G has exactly one subgroup H of order k, prove that H is normal in G.
24. Prove or disprove: Q/Z = Q.
25. Define the centralizer of an element g in a group G to be the set

C(g) ={xeG:xg=gx}.

Show that C(g) is a subgroup of G. If g generates a normal subgroup of G, prove that
C(g) isnormal in G.

26. Recall that the center of a group G is the set
Z(G)={xeG:xg=gxforallgeG }.

(a) Calculate the center of Ss.

(b) Calculate the center of GL,(R).

(c) Show that the center of any group G is a normal subgroup of G.
(d) If G/Z(G) is cyclic, show that G is abelian.

27. Let G be a finite group and N a normal subgroup of G. If H is a subgroup of G/N,
prove that ¢'(H) is a subgroup in G of order |H| - |N|, where ¢ : G - G/N is the
canonical homomorphism.

28. Let G bea group and let G’ = (aba™'b™'); that is, G’ is the subgroup of all finite prod-
ucts of elements in G of the form aba™'b™". The subgroup G’ is called the commutator
subgroup of G.

(a) Show that G’ is a normal subgroup of G.
(b) Let N be a normal subgroup of G. Prove that G/N is abelian if and only if N
contains the commutator subgroup of G.
29. Let G; and G, be groups, and let H; and H, be normal subgroups of G; and G,

respectively. Let ¢ : Gi - Gz be a homomorphism. Show that ¢ induces a natural
homomorphism ¢ : (Gi/H1) = (G2/H>) if ¢(H;) € H>.
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30. If H and K are normal subgroups of G and H n K = {e}, prove that G is isomorphic
to a subgroup of G/H x G/K.

31. Let ¢ : Gi — G be a surjective group homomorphism. Let H; be a normal subgroup
of Gy and suppose that ¢(H;) = Ha. Prove or disprove that Gi/H; = G»/H,.

32. Let ¢ : G — H be a group homomorphism. Show that ¢ is one-to-one if and only if
¢7'(e) = {e}.
Additional Exercises: Automorphisms

1. Let Aut(G) be the set of all automorphisms of G; that is, isomorphisms from G to itself.
Prove this set forms a group and is a subgroup of the group of permutations of G; that
is, Aut(G) < Sq.

2. An inner automorphism of G,
ig:G—G,
is defined by the map
ig(x) = gxg ™,
for g € G. Show that iy € Aut(G).

3. The set of all inner automorphisms is denoted by Inn(G). Show that Inn(G) is a
subgroup of Aut(G).

4. Find an automorphism of a group G that is not an inner automorphism.

5. Let G be a group and i, be an inner automorphism of G, and define a map
G — Aut(G)

by
g+ ig-
Prove that this map is a homomorphism with image Inn(G) and kernel Z(G). Use this
result to conclude that
G/Z(G) = Inn(G).

6. Compute Aut(S;) and Inn(Ss3). Do the same thing for Ds.
7. Find all of the homomorphisms ¢ : Z — Z. What is Aut(Z)?
8. Find all of the automorphisms of Zs. Prove that Aut(Zs) = U(8).
9. For k € Z,, define a map ¢ : Z, - Z, by a — ka. Prove that ¢; is a homomorphism.
10. Prove that ¢ is an isomorphism if and only if k is a generator of Z,,.
11. Show that every automorphism of Z, is of the form ¢, where k is a generator of Z,,.

12. Prove that y : U(n) - Aut(Z,) is an isomorphism, where y : k — ¢y.
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Matrix Groups and Symmetry

When Felix Klein (1849-1925) accepted a chair at the University of Erlangen,
he outlined in his inaugural address a program to classify different
geometries. Central to Klein’s program was the theory of groups: he considered
geometry to be the study of properties that are left invariant under transformation
groups. Groups, especially matrix groups, have now become important in the
study of symmetry and have found applications in such disciplines as chemistry
and physics. In the first part of this chapter, we will examine some of the classical
matrix groups, such as the general linear group, the special linear group, and the
orthogonal group. We will then use these matrix groups to investigate some of
the ideas behind geometric symmetry.

10.1 Matrix Groups

Some Facts from Linear Algebra

Before we study matrix groups, we must recall some basic facts from linear al-
gebra. One of the most fundamental ideas of linear algebra is that of a linear
transformation. A linear transformation or linear map T : R” — R™ is a map that
preserves vector addition and scalar multiplication; that is, for vectors x and y in
R” and a scalar o € R,

T(x+y) =T(x)+T(y)
T(ay) = aT(y).

An m x n matrix with entries in R represents a linear transformation from R" to
R™. If we write vectors x = (xy,...,x,) andy = (y1,...,y,)" in R” as column
matrices, then an m x n matrix

an an o

Am1  Am2 Amn
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maps the vectors to R™ linearly by matrix multiplication. Observe that if « is a

real number,
A(x+y) = Ax + Ay

aAx = A(ax),

where

Xn

We will often abbreviate the matrix A by writing (a;;).
Conversely, if T : R” — R™ is a linear map, we can associate a matrix A with
T by considering what T does to the vectors

e =(1,0,...,0)"
e;=(0,1,...,0)"

t
en=(0,0,...,1)"
We can write any vector X = (x1,...,x,)" as
X1€1 + X8y + - + Xp€y.

Consequently, if

T(e) = (an, a2t - - > am1)"s
T(ez) = (‘112, azzs..-» amz)t,
T(en) = (aln’ Aops e e amn)t:

then
T(x) = T(x1e; + xp€3 + - + xp€,)

=x1T(e;) +x:T(e) ++x,T(e,)

n n t
=Y awxis. s Y, amxs
k=1 k=1
= Ax.

Example 1. If we let T : R* - R? be the map given by

T(x1,x2) = (2x1 + 5%2, —4x1 + 3%2),
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the axioms that T' must satisfy to be a linear transformation are easily verified.
The column vectors Te; = (2,—4)" and Te, = (5,3)" tell us that T is given by the

matrix
2 5
o 23)

Since we are interested in groups of matrices, we need to know which matrices
have multiplicative inverses. Recall that an n x n matrix A is invertible exactly
when there exists another matrix A" such that AA™ = A™' A = I, where

0 1 0
I=

is the n x n identity matrix. From linear algebra we know that A is invertible if
and only if the determinant of A is nonzero. Sometimes an invertible matrix is
said to be nonsingular.

Example 2. If A is the matrix

then the inverse of A is

a4 3
A _(_5 ).

We are guaranteed that A~ exists, since det(A) =2-3 - 5-1=1is nonzero.

Some other facts about determinants will also prove useful in the course of
this chapter. Let A and B be n x n matrices. From linear algebra we have the
following properties of determinants.

o The determinant is a homomorphism into the multiplicative group of real
numbers; that is, det(AB) = (det A)(det B).

o If Ais an invertible matrix, then det(A™") = 1/ det A.

« If we define the transpose of a matrix A = (a;;) tobe A" = (a;;), then det(A") =
det A.

o Let T be the linear transformation associated with an n x n matrix A. Then T
multiplies volumes by a factor of | det A|. In the case of R?, this means that T
multiplies areas by | det A|.

Linear maps, matrices, and determinants are covered in any elementary lin-

ear algebra text; however, if you have not had a course in linear algebra, it is a
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straightforward process to verify these properties directly for 2 x 2 matrices, the
case with which we are most concerned.
The General and Special Linear Groups

The set of all n x n invertible matrices forms a group called the general linear
group. We will denote this group by GL,(R). The general linear group has
several important subgroups. The multiplicative properties of the determinant
imply that the set of matrices with determinant one is a subgroup of the general
linear group. Stated another way, suppose that det(A) = 1and det(B) = 1. Then
det(AB) = det(A) det(B) = 1and det(A™") =1/ det A = 1. This subgroup is called
the special linear group and is denoted by SL, (R).

Example 3. Given a 2 x 2 matrix

a b
(d)
the determinant of A is ad — bc. The group GL,(R) consists of those matrices in
which ad — bc # 0. The inverse of A is

1 d -b
Al = .
ad—bc( —C a )

o d b
N\ ¢ a

Geometrically, SL, (R) is the group that preserves the areas of parallelograms. Let

1 1
(o 1)
be in SL,(R). In Figure 10.1, the unit square corresponding to the vectors x =
(1,0)" and y = (0,1)" is taken by A to the parallelogram with sides (1,0)" and

(1,1)% that is, Ax = (1,0)" and Ay = (1,1)". Notice that these two parallelograms
have the same area.

If Aisin SLy(R), then

The Orthogonal Group O(n)
Another subgroup of GL,,(R) is the orthogonal group. A matrix A is orthogonal
if A™' = A". The orthogonal group consists of the set of all orthogonal matrices.

We write O(n) for the n x n orthogonal group. We leave as an exercise the proof
that O(n) is a subgroup of GL,(R).
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0, 1) (3]

a,0 {1,0)

Figure 10.1. SL,(R) acting on the unit square

Example 4. The following matrices are orthogonal:

-1/V2 0 12
3/5 -4/5 12 —/3/2 1/
(4/5 3/5 ) (ﬁ/2 1/2 ) V6 -2/ 16

V3 13 13

There is a more geometric way of viewing the group O(n). The orthogonal
matrices are exactly those matrices that preserve the length of vectors. We can
define the length of a vector using the Euclidean inner product, or dot product,
of two vectors. The Euclidean inner product of two vectors x = (xi, ..., x,)" and

y=01--yn)tis

N
¥2

(X,Y):Xty:(xbxz,...,xn) : =X )+ X Y-

Vn

We define the length of a vector x = (x1,...,x,)" to be

x| =/ (x,x) = \/x? + - + x2.
%]l = v/ (x.x) i "

Associated with the notion of the length of a vector is the idea of the distance
between two vectors. We define the distance between two vectors x and y to be
|x —y|. We leave as an exercise the proof of the following proposition about the
properties of Euclidean inner products.

Proposition 10.1. Let X, y, and w be vectors in R” and « € R. Then
L (x%y) = (¥, x).

2. (x,y+w)=(x,y) + (x,w).

3. (axy) = (x, ay) = a(xy).

4. (x,x) > 0 with equality exactly when x = 0.

5. If (x,y) = 0 forallx in R", then'y = 0.
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Example 5. The vector x = (3,4)" has length /32 + 42 = 5. We can also see that

the orthogonal matrix
[ 3/5 -4/5
4= ( 4/5  3/5 )

preserves the length of this vector. The vector Ax = (-7/5,24/5)" also has length
5.

Since det(AA") = det(I) = 1and det(A) = det(A"), the determinant of any
orthogonal matrix is either 1 or —1. Consider the column vectors

of the orthogonal matrix A = (a;;). Since AA' = I, (a,, a,) = &, where

1 r=s
Ors = { 0 r#s
is the Kronecker delta. Accordingly, column vectors of an orthogonal matrix
all have length 1; and the Euclidean inner product of distinct column vectors is
zero. Any set of vectors satistying these properties is called an orthonormal set.
Conversely, given an n x n matrix A whose columns form an orthonormal set,
ATl = AN
We say that a matrix A is distance-preserving, length-preserving, or inner
product-preserving when | Tx - Ty| = |x - y|, | Tx| = ||x|, or {Tx, Ty) = (x,y),
respectively. The following theorem, which characterizes the orthogonal group,
says that these notions are the same.

Theorem 10.2. Let A be an n x n matrix. The following statements are equivalent.
1. The columns of the matrix A form an orthonormal set.

2. AT = AL

3. For vectors x andy, (Ax, Ay) = (x,y).

4. For vectors x andy, | Ax — Ay| = |x - y||.

5. For any vector x, | Ax| = ||x|.



158 MATRIX GROUPS AND SYMMETRY

Proof. We have already shown (1) and (2) to be equivalent.

(2) = (3).
(Ax, Ay) = (Ax)'Ay = x'A'Ay = X'y = (x, ).
(3) = (2). Since
(x,x) = (Ax, Ax) = x'A" Ay = (x, A'Ax),

we know that (x, (A'A - I)x) = 0 for all x. Therefore, A'"A—~I=0o0r A™' = A".
(3) = (4). If A is inner product-preserving, then A is distance-preserving,

since R 5
|Ax - Ay[* = |A(x - y)]

= (A(x-y), A(x-y))
= (x-y.x-y)
= |x-yl*
(4) = (5). If A is distance-preserving, then A is length-preserving. Letting

y = 0, we have
| Ax|| = [|Ax - Ay[| = [x -y = |x].

(5) = (3). We use the following identity to show that length-preserving
implies inner product-preserving:

1
(xy) = 2 [+ yl* = Ix = [vl°].

Observe that
(4, Ay) = 5 [ Ax + Ay]? - | Ax]? - |ay]?]
= 2 [1AGe+ y)I? - [4x)? - ay]?]
= > [yl - IxP - IyIP)
= (xy). ]

Example 6. Let us examine the orthogonal group on R? a bit more closely. An
element T € O(2) is determined by its action on e; = (1,0)" and e; = (0,1)".
If T(e;) = (a,b)", then a® + b*> = 1and T(e;) = (-b,a)'. Hence, T can be

represented by
A a -b\ [ cos§ -—sinb
“\b a )\ sin0 cos )’



MATRIX GROUPS 159

sin 6, — cos
(in6.—cosO) | s 6, sin 0)

6

(a, b)

I\* (a, -b)

Figure 10.2. O(2) acting on R?

where 0 < 6 < 271. A matrix T in O(2) either reflects or rotates a vector in R?
(Figure 10.2). A reflection is given by the matrix

(b 5)

whereas a rotation by an angle 0 in a counterclockwise direction must come from

a matrix of the form
cos 0 sin 0
sinf -cosf |’

If det A = -1, then A gives a reflection.

Two of the other matrix or matrix-related groups that we will consider are
the special orthogonal group and the group of Euclidean motions. The special
orthogonal group, SO(n), is just the intersection of O(n) and SL, (R); that is,
those elements in O(n) with determinant one. The Euclidean group, E(#), can
be written as ordered pairs (A, x), where A is in O(n) and x is in R". We define
multiplication by

(A,x)(B,y) = (AB, Ay +x).

The identity of the group is (I, 0); the inverse of (A, x) is (A™!, ~A™'x). In Exer-
cise 6, you are asked to check that E(#) is indeed a group under this operation.

/x+y

Figure 10.3. Translations in R?
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10.2 Symmetry

An isometry or rigid motion in R" is a distance-preserving function f from R"
to R". This means that f must satisfy

If () =Wl =lx-vl

for all x,y € R". It is not difficult to show that f must be a one-to-one map. By
Theorem 10.2, any element in O(#n) is an isometry on R”; however, O(n) does
not include all possible isometries on R". Translation by a vector x, Ty(x) = x +y
is also an isometry (Figure 10.3); however, T cannot be in O(#) since it is not a
linear map.

We are mostly interested in isometries in R?. In fact, the only isometries in
R? are rotations and reflections about the origin, translations, and combinations
of the two. For example, a glide reflection is a translation followed by a reflection
(Figure 10.4). In R" all isometries are given in the same manner. The proof is very
easy to generalize.

T(x)

Figure 10.4. Glide reflections

Lemma 10.3. An isometry f that fixes the origin in R? is a linear transformation.
In particular, f is given by an element in O(2).

Proof. Let f be an isometry in R? fixing the origin. We will first show that f
preserves inner products. Since f(0) =0, | f(x)] = |x]; therefore,

Ix[? =2 (x), F()) + Iy l? = 1F GO I* = 2(f (%), fF(9)) + [ f (V)P
={(f(x) = f(y), f(x) - f(¥))
=fx) -y
= [x-y|?
={x-y,x-y)
= [x[* = 2(x,y) + y]*.

Consequently,

(f(x), f(¥)) = ().
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Now let e; and e; be (1,0)" and (0,1)", respectively. If
x = (x1, %) = x1€1 + X263,

then

() = {f(x), fe))f(er) + {f(x), f(e2)) f(e2) = x1 f(er) + x2 (e2).
The linearity of f easily follows. ]

For any arbitrary isometry, f, Ty f will fix the origin for some vector x in R%;
hence, Txf(y) = Ay for some matrix A € O(2). Consequently, f(y) = Ay + x.
Given the isometries

f(y)=Ay+x
g(Y) :BY+X2>

their composition is

f(g(y)) = f(By +x;) = ABy + Ax, +xi.

This last computation allows us to identify the group of isometries on R* with the
Euclidean group E(2).

Theorem 10.4. The group of isometries on R? is the Euclidean group, E(2).

A symmetry group in R” is a subgroup of the group of isometries on R” that
fixes a set of points X c R?. It is important to realize that the symmetry group of
X depends both on R" and on X. For example, the symmetry group of the origin
in R! is Z,, but the symmetry group of the origin in R? is O(2).

Theorem 10.5. The only finite symmetry groups in R? are Z,, and D,,.

Proof. Any finite symmetry group G in R* must be a finite subgroup of O(2);
otherwise, G would have an element in E(2) of the form (A, x), where x # 0.
Such an element must have infinite order.

By Example 6, elements in O(2) are either rotations of the form

R = cosf@ —sinf
9=\ sin0 cos 0
or reflections of the form

T - cosf@ —sinf
=\ sin6 cosf |’
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Notice that det(Rp) =1, det(Ty) = -1, and Tj = I. We can divide the proof up
into two cases. In the first case, all of the elements in G have determinant one. In
the second case, there exists at least one element in G with determinant —1.

Case 1. The determinant of every element in G is one. In this case every
element in G must be a rotation. Since G is finite, there is a smallest angle, say 0,
such that the corresponding element Ry, is the smallest rotation in the positive
direction. We claim that Rg, generates G. If not, then for some positive integer
n there is an angle 0, between n6, and (n +1)8y. If so, then (n +1)6, — 6,
corresponds to a rotation smaller than 6y, which contradicts the minimality of
0o.

Case 2. The group G contains a reflection Ty. The kernel of the homomorphism
¢: G — {-1,1} given by A — det(A) consists of elements whose determinant is 1.
Therefore, |G/ ker ¢| = 2. We know that the kernel is cyclic by the first case and is
a subgroup of G of, say, order n. Hence, |G| = 2n. The elements of G are

Rg,...,Ry™", TRq,..., TR}
These elements satisfy the relation
TReT = Ry

Consequently, G must be isomorphic to D,, in this case. ]

Figure 10.5. A wallpaper pattern in R?

The Wallpaper Groups

Suppose that we wish to study wallpaper patterns in the plane or crystals in
three dimensions. Wallpaper patterns are simply repeating patterns in the plane
(Figure 10.5). The analogs of wallpaper patterns in R are crystals, which we can
think of as repeating patterns of molecules in three dimensions (Figure 10.6). The
mathematical equivalent of a wallpaper or crystal pattern is called a lattice.

Let us examine wallpaper patterns in the plane a little more closely. Suppose
that x and y are linearly independent vectors in R?; that is, one vector cannot be a
scalar multiple of the other. A lattice of x and y is the set of all linear combinations
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Figure 10.6. A crystal structure in R?

mXx + ny, where m and #n are integers. The vectors x and y are said to be a basis
for the lattice.

=1, 1) 1,1

\/4
/ 7(2.0)
I, 71V

Figure 10.7. A lattice in R

Notice that a lattice can have several bases. For example, the vectors (1,1)"
and (2, 0)" have the same lattice as the vectors (—1,1)" and (-1, —1)" (Figure 10.7).
However, any lattice is completely determined by a basis. Given two bases for the
same lattice, say {x1,X,} and {y1,y,}, we can write

Y1 = Xy + axX)

Y2 = Bixi + Paxo,

where a4, a3, 51, and f3; are integers. The matrix corresponding to this transfor-

mation is
o &)
U= .
( Pv P> )

If we wish to give x; and x, in terms of y; and y,, we need only calculate U™; that

is,
Ul Y1 _ X
Y2 x |
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Since U has integer entries, U™" must also have integer entries; hence the deter-
minants of both U and U™! must be integers. Because UU ! = I,

det(UU™) = det(U) det(U™) = 1;

consequently, det(U) = +1. A matrix with determinant +1 and integer entries is
called unimodular. For example, the matrix

(52)

is unimodular. It should be clear that there is a minimum length for vectors in a
lattice.

We can classify lattices by studying their symmetry groups. The symmetry
group of a lattice is the subgroup of E(2) that maps the lattice to itself. We consider
two lattices in R* to be equivalent if they have the same symmetry group. Similarly,
classification of crystals in R® is accomplished by associating a symmetry group,
called a space group, with each type of crystal. Two lattices are considered different
if their space groups are not the same. The natural question that now arises is how
many space groups exist.

A space group is composed of two parts: a translation subgroup and a point
group. The translation subgroup is an infinite abelian subgroup of the space group
made up of the translational symmetries of the crystal; the point group is a finite
group consisting of rotations and reflections of the crystal about a point. More
specifically, a space group is a subgroup of G c E(2) whose translations are a
set of the form {(I, ) : t € L}, where L is a lattice. Space groups are, of course,
infinite. Using geometric arguments, we can prove the following theorem (see [5]
or [6]).

Theorem 10.6. Every translation group in R? is isomorphic to Z x Z.

Square Rectangular Rhombic

o

Parallelogram Hexagonal

&

Figure 10.8. Types of lattices in R?
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The point group of G is G = {A: (A, b) € G for some b}. In particular, Go
must be a subgroup of O(2). Suppose that x is a vector in a lattice L with space
group G, translation group H, and point group Gy. For any element (4,y) in G,

(4,y)(Lx)(4,y)"

(A, Ax+y) (A7, -ATy)
(AA™, -AAy + Ax +y)
(I, Ax);

hence, (I, Ax) is in the translation group of G. More specifically, Ax must be in
the lattice L. It is important to note that Gy is not usually a subgroup of the space
group G; however, if T is the translation subgroup of G, then G/T = Gy. The
proof of the following theorem can be found in [2], [5], or [6].

Theorem 10.7. The point group in the wallpaper groups is isomorphic to Z, or
D,,wheren=1,2,3,4,6.

To answer the question of how the point groups and the translation groups
can be combined, we must look at the different types of lattices. Lattices can
be classified by the structure of a single lattice cell. The possible cell shapes are
parallelogram, rectangular, square, rhombic, and hexagonal (Figure 10.8). The
wallpaper groups can now be classified according to the types of reflections that
occur in each group: these are ordinarily reflections, glide reflections, both, or
none.

Notation and Reflections
Space Groups | Point Group | Lattice Type or Glide Reflections?
pl Z, parallelogram | none

p2 Z, parallelogram | none

p3 Zs3 hexagonal none

p4 Zy square none

p6 Zs hexagonal none

pm D, rectangular reflections

Pg D, rectangular glide reflections
cm D, rhombic both

pmm D, rectangular reflections

pmg D, rectangular glide reflections
pgg D, rectangular both

c2mm D, rhombic both

p3ml, p3lm | D3 hexagonal both

p4m, p4g D, square both

pém Dg hexagonal both

Table 10.1. The 17 wallpaper groups



166 MATRIX GROUPS AND SYMMETRY

Theorem 10.8. There are exactly 17 wallpaper groups.

5]
=
5
U

pam pag

R
Ll
Gl

Figure 10.9. The wallpaper groups p4m and p4g

The 17 wallpaper groups are listed in Table 10.1. The groups p3m1 and p31m
can be distinguished by whether or not all of their threefold centers lie on the
reflection axes: those of p3m1 must, whereas those of p31m may not. Similarly, the
fourfold centers of pgm must lie on the reflection axes whereas those of p4g need
not (Figure 10.9). The complete proof of this theorem can be found in several of
the references at the end of this chapter, including [5], [6], [10], and [11].

Historical Note

Symmetry groups have intrigued mathematicians for a long time. Leonardo da Vinci was
probably the first person to know all of the point groups. At the International Congress of
Mathematicians in 1900, David Hilbert gave a now-famous address outlining 23 problems to
guide mathematics in the twentieth century. Hilbert’s eighteenth problem asked whether or
not crystallographic groups in n dimensions were always finite. In 1910, Ludwig Bieberbach
proved that crystallographic groups are finite in every dimension. Finding out how many
of these groups there are in each dimension is another matter. In R* there are 230 different
space groups; in R* there are 4783. No one has been able to compute the number of
space groups for R and beyond. It is interesting to note that the crystallographic groups
were found mathematically for R* before the 230 different types of crystals were actually
discovered in nature.

Exercises

1. Prove the identity
1
(oy) = 5 [yl = [xI* - Iy l*].
2. Show that O(n) is a group.
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3. Prove that the following matrices are orthogonal. Are any of these matrices in SO(n)?

(a) (INz —l/ﬁ) (b) ( 1\/5 2N§)
V2 132 -2//5 13/5
() 4/v5 0 35 (d) /3 2/3 -2/3
_3/\/§ 0 4/\/§ (—2/3 2/3 1/3)
0o -1 0 -2/3 1/3 23

4. Determine the symmetry group of each of the figures in Figure 10.10.

=) Gy

(a) (©)

®
Figure 10.10.

5. Letx,y, and w be vectors in R" and « € R. Prove each of the following properties of
inner products.
@ (xy)=(y.x).
) (x,y+w)=(xy)+(x,w).
(© (axy) = (% ay) = a(x.y).
(d) (x,x) > 0 with equality exactly when x = 0.
(e) If(x,y) = 0forallxin R", theny = 0.
6. Verify that
E(n)={(A,x):AeO(n)andx e R"}
is a group.
7. Prove that {(2,1), (1,1)} and {(12,5), (7,3) } are bases for the same lattice.

8. Let G be a subgroup of E(2) and suppose that T is the translation subgroup of G. Prove
that the point group of G is isomorphic to G/T.

9. Let A € SL,(R) and suppose that the vectors x and y form two sides of a parallelogram in
R”. Prove that the area of this parallelogram is the same as the area of the parallelogram
with sides Ax and Ay.

10. Prove that SO(n) is a normal subgroup of O(n).

11. Show that any isometry f in R" is a one-to-one map.

12. Show that an element in E(2) of the form (A, x), where x # 0, has infinite order.
13. Prove or disprove: There exists an infinite abelian subgroup of O(n).

14. Letx = (x1, x2) be a point on the unit circle in R% thatis, x> + x> =1L IfA € 0(2),
show that Ax is also a point on the unit circle.
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15. Let G be a group with a subgroup H (not necessarily normal) and a normal subgroup
N. Then G is a semidirect product of N by H if

« HNN ={id};
« HN =G.
Show that each of the following is true.
(a) S is the semidirect product of A3 by H = {(1), (12)}.
(b) The quaternion group, Qg, cannot be written as a semidirect product.
(c) E(2) is the semidirect product of O(2) by H, where H consists of all translations
in R*.
16. Determine which of the 17 wallpaper groups preserves the symmetry of the pattern in
Figure 10.5.

N

o
O
O

7

N#NANY

L/

Figure 10.11.

17. Determine which of the 17 wallpaper groups preserves the symmetry of the pattern in
Figure 10.11.

18. Find the rotation group of a dodecahedron.

19. For each of the 17 wallpaper groups, draw a wallpaper pattern having that group as a
symmetry group.
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The Structure of Groups

he ultimate goal of group theory is to classify all groups up to isomorphism;

that is, given a particular group, we should be able to match it up with a

known group via an isomorphism. For example, we have already proved that any

finite cyclic group of order # is isomorphic to Z,,; hence, we “know” all finite cyclic

groups. It is probably not reasonable to expect that we will ever know all groups;

however, we can often classify certain types of groups or distinguish between
groups in special cases.

In this chapter we will characterize all finite abelian groups. We shall also
investigate groups with sequences of subgroups. If a group has a sequence of
subgroups, say

G=H,>H,1>->H;>Hy={e},

where each subgroup H; is normal in H;,; and each of the factor groups H;.1/H;
is abelian, then G is a solvable group. In addition to allowing us to distinguish
between certain classes of groups, solvable groups turn out to be central to the
study of solutions to polynomial equations.

11.1 Finite Abelian Groups

In our investigation of cyclic groups we found that every group of prime order

was isomorphic to Z,, where p was a prime number. We also determined that

Zin 2 Zy x Z, when gcd(m, n) = 1. In fact, much more is true. Every finite

abelian group is isomorphic to a direct product of cyclic groups of prime power

order; that is, every finite abelian group is isomorphic to a group of the type
Zp;n X oo X szn.

First, let us examine a slight generalization of finite abelian groups. Suppose
that G is a group and let {g; } be a set of elements in G, where i is in some index
set I (not necessarily finite). The smallest subgroup of G containing all of the g;’s
is the subgroup of G generated by the g;’s. If this subgroup of G is in fact all of
G, then G is generated by the set {g; : i € I}. In this case the g;’s are said to be
the generators of G. If there is a finite set {g; : i € I'} that generates G, then G is
finitely generated.
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Example 1. Obviously, all finite groups are finitely generated. For example, the
group S; is generated by the permutations (12) and (123). The group Z x Z,, is
an infinite group but is finitely generated by {(1,0), (0,1)}.

Example 2. Not all groups are finitely generated. Consider the rational numbers
Q under the operation of addition. Suppose that Q is finitely generated with
generators p1/qi, . .., pn/qn. where each p;/q; is a fraction expressed in its low-
est terms. Let p be some prime that does not divide any of the denominators
q1, - - -»qn. We claim that 1/p cannot be in the subgroup of @ that is generated by
P1/91> - - - » Pn/qn» since p does not divide the denominator of any element in this
subgroup. This fact is easy to see since the sum of any two generators is

pilgi + pjlaj = (piqj + p;jqi)/(q:q;)-

Theorem 11.1. Let H be the subgroup of a group G that is generated by {g; € G :
i € I}. Then h € H exactly when it is a product of the form

o oy
h=gigtt,
where the g;,’s are not necessarily distinct.

The reason that powers of a fixed g; may occur several times in the product is
that we may have a nonabelian group. However, if the group is abelian, then the
gi’s need occur only once. For example, a product such as a=>b°a’ could always
be simplified (in this case, to a*b”).

Proof. Let K be the set of all products of the form g;*---g;'", where the g;,’s are
not necessarily distinct. Certainly K is a subset of H. We need only show that K is
a subgroup of G. If this is the case, then K = H, since H is the smallest subgroup
containing all the g;s.

Clearly, the set K is closed under the group operation. Since g7 = 1, the
identity is in K. It remains to show that the inverse of an element g = g*--- gfn" in
K must also be in K. However,

g = (g g = (g g ). .

Now let us restrict our attention to finite abelian groups. We can express any
finite abelian group as a finite direct product of cyclic groups. More specifically,
letting p be prime, we define a group G to be a p-group if every element in G has
as its order a power of p. For example, both Z, x Z, and Z, are 2-groups, whereas
Z,7 is a 3-group. We shall prove that every finite abelian group is isomorphic to a
direct product of cyclic p-groups. Before we state the main theorem concerning
finite abelian groups, we shall consider a special case.
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Theorem 11.2. Every finite abelian group G is the direct product of p-groups.

Proof. If|G| =1, then the theorem is trivial. Suppose that the order of G is greater
than 1, say

|G| = pi*---py"
where pi, ..., p, are all prime, and define G; to be the set of elements in G of

order p* for some integer k. Since G is an abelian group, we are guaranteed that
G; is a subgroup of G for i = 1,..., n. We must show that

G=Gy xxG,.

That is, we must be able to write every g € G as a unique product g, g,, where
gp; is of the order of some power of p;. Since the order of g divides the order of
G, we know that

g1 = pl" p5ph
for integers f31, ..., B,. Letting a; = |g|/ pf ', the a;’s are relatively prime; hence,
there exist integers by, . .., b, such that a;b; + --- + a,b, = 1. Consequently,

arby+---+anby arby | anby

9g=9 =9 g

Since
a;b;)p"! bilg
g( )p; =g lal =e,

it follows that g%* must be in G;. Let g; = g%". Then g = gi---g, and G, N G, =
{e} fori=j.
To show uniqueness, suppose that

g = gl...gn = hl...hn

with k; € G;. Then

e = (gign)(hihn)™ = gihy ' guhy!.

The order of g;h;! is a power of p;; hence, the order of g h;'--g,h;! is the least
common multiple of the orders of the g;h;'. This must be 1, since the order of
the identity is 1. Therefore, |g;h;!|=1or g; = h; fori=1,...,n. ]

Theorem 11.3. (Fundamental Theorem of Finite Abelian Groups) Every finite
abelian group G is isomorphic to a direct product of cyclic groups of the form

Zp«lxl X ZPZZ X +ee X Zp:n

where the p;’s are primes (not necessarily distinct).
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Example 3. Suppose that we wish to classify all abelian groups of order 540 =
22.33 .5, The Fundamental Theorem of Finite Abelian Groups tells us that we
have the following six possibilities.

o ZyxZyxZsxZyxLsyx%xLs;

o Iy xZyxZ3xLgxTs;

o Ly x Ly x Loy x Is;

o ZyxZ3xZ3xL3xZs;

o Zyx 3% 2y xIs;

o J4X 2oy X s,

The proof of the Fundamental Theorem relies on the following lemma.

Lemma 11.4. Let G be a finite abelian p-group and suppose that g € G has
maximal order. Then G can be written as (g) x H for some subgroup H of G.

Proof. Suppose that the order of G is p". We shall induct on n. If n = 1, then G is
cyclic of order p and must be generated by g. Suppose now that the statement of
the lemma holds for all integers k with 1 < k < n and let g be of maximal order in
G, say |g| = p™. Then a?” = e for all a € G. Now choose h in G such that 4 ¢ (g),
where h has the smallest possible order. Certainly such an h exists; otherwise,
G = (g) and we are done. Let H = (h).

We claim that (g)nH = {e}. It suffices to show that |H| = p. Since |h?| = |h|/p,
the order of h? is smaller than the order of # and must be in (g) by the minimality
of h; that is, h? = g" for some number r. Hence,

(g = ()" = k" =,

and the order of g" must be less than or equal to p™~!. Therefore, g" cannot
generate (g). Notice that p must occur as a factor of r, say r = ps,and h? = g" =
gP*. Define a to be g~*h. Then a cannot be in (g); otherwise, h would also have
to be in (g). Also,

af = g Ph? = g7"h? = h"FPhP = e,

We have now formed an element a with order p such that a ¢ (g). Since h was
chosen to have the smallest order of all of the elements that are not in (g), |H| = p.

Now we will show that the order of gH in the factor group G/H must be the
same as the order of g in G. If |gH| < |g| = p™, then

m—1

H=(gH)"" =g"" H;
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hence, g¥ "™ must be in (g) N H = {e}, which contradicts the fact that the order of
gis p™. Therefore, gH must have maximal order in G/H. By the Correspondence
Theorem and our induction hypothesis,

G/H = (gH) x K/H

for some subgroup K of G containing H. We claim that (g)nK = {e}. Ifb € (g)nK,
then bH € (gH) N K/H = {H} and b € (g) n H = {e}. It follows that G = (g)K
implies that G = (g) x H. ]

The proof of the Fundamental Theorem of Finite Abelian Groups follows
very quickly from Lemma 11.4. Suppose that G is a finite abelian group and let g
be an element of maximal order in G. If (g) = G, then we are done; otherwise,
G = Z)4 x H for some subgroup H contained in G by the lemma. Since |H| < |G|,
we can apply mathematical induction.

We now state the more general theorem for finitely generated abelian groups.
The proof of this theorem can be found in any of the references at the end of this
chapter.

Theorem 11.5. (Fundamental Theorem of Finitely Generated Abelian Groups)
Every finitely generated abelian group G is isomorphic to a direct product of cyclic
groups of the form

Zpixl X Zpgz X X Lyan X L% X L,

where the p;’s are primes (not necessarily distinct).

11.2 Solvable Groups

A subnormal series of a group G is a finite sequence of subgroups
G:HnDHn_l:J'“DHlDHOZ{e},

where H; is a normal subgroup of H,;. If each subgroup H; is normal in G, then
the series is called a normal series. The length of a subnormal or normal series is
the number of proper inclusions.

Example 4. Any series of subgroups of an abelian group is a normal series. Con-
sider the following series of groups:

Z 597 > 457 51807 > {0},
Z,4 5 (2) 5 (6) o (12) o {0}.
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Example 5. A subnormal series need not be a normal series. Consider the follow-
ing subnormal series of the group Dy:

Dy > {(1), (12)(34), (13)(24), (14)(23) } = {(1), (12)(34) } = { (D) }.

The subgroup {(1), (12)(34)} is not normal in D4; consequently, this series is not
a normal series.

A subnormal (normal) series {K;} is a refinement of a subnormal (normal)
series {H; } if {H;} c {K;}. That s, each H; is one of the K;.

Example 6. The series
Z 5375975457 5907 >180Z > {0}
is a refinement of the series
Z 597 5457 5180Z > {0}.

The correct way to study a subnormal or normal series of subgroups, {H;}
of G, is actually to study the factor groups H;,;/H;. We say that two subnormal
(normal) series {H;} and {K;} of a group G are isomorphic if there is a one-
to-one correspondence between the collections of factor groups {H;.1/H;} and
{Kj/K;}.

Example 7. The two normal series

Zso o (3) 2 (15) o {0}
Zgo > (4) 2 (20) > {0}

of the group Z¢ are isomorphic since

Zso/(3) = (20)/{0} = Z4
(3)/(15) = (4)/(20) = Zs
(15)/10} = Zgo/(4) = Z,.

A subnormal series {H; } of a group G is a composition series if all the factor
groups are simple; that is, if none of the factor groups of the series contains a
normal subgroup. A normal series {H;} of G is a principal series if all the factor
groups are simple.

Example 8. The group Zg, has a composition series

Zso o (3) o (15) o (30) o {0}
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with factor groups

Zso/(3) 275, (3)/{15) 2 Zs,
(15)/(30) = Z5,  (30)/{0} = Z,.

Since Zg is an abelian group, this series is automatically a principal series. Notice
that a composition series need not be unique. The series

Zso 2 (2) o (4) 2 (20) > {0}

is also a composition series.

Example 9. For n > 5, the series S, > A,, o {(1) } is a composition series for S,
since S, /A, % Z, and A,, is simple.

Example 10. Not every group has a composition series or a principal series. Sup-
pose that
{O}ZHQCHIC-"CHn_lCHn:Z

is a subnormal series for the integers under addition. Then H; must be of the
form nZ for some n € N. In this case H;/Hy 2 nZ is an infinite cyclic group with
many nontrivial proper normal subgroups.

Although composition series need not be unique as in the case of Zgy, it turns
out that any two composition series are related. The factor groups of the two
composition series for Zg are Z,, Z,, Z3, and Zs; that is, the two composition
series are isomorphic. The Jordan-Holder Theorem says that this is always the
case.

Theorem 11.6 (Jordan-Hoélder). Any two composition series of G are isomorphic.

Proof. We shall employ mathematical induction on the length of the composition
series. If the length of a composition series is 1, then G must be a simple group.
In this case any two composition series are isomorphic.

Suppose now that the theorem is true for all groups having a composition
series of length k, where 1 < k < n. Let

G:HnDHn_lD---DHIDH():{e}
G=Ku>Kpu12-2K>Ky={e}

be two composition series for G. We can form two new subnormal series for G
since H; N K,,,_; isnormal in H;;; " K,,_; and K; n H,,_; is normal in Kj,; " H,_;:

G= Hn o] Hn—l o] Hn—l N Km—l DD HO N Km—l = {6}
G=Ku>Ky-12Kp-1nHp12--2KoNHpy = {e}
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Since H; n K;,—; is normal in H;;1 N K-, the Second Isomorphism Theorem
implies that

(HinnnKp)/(HinKpoy) = (Hipn 0 Kpuor)/(Hi 0 (Hizn 0 Kipmy))

*Hi(HixnKy-1)/Hij,

where H; is normal in H;(H;; N K,,—1). Since {H,-} is a composition series,
H;.1/H; must be simple; consequently, H;(H;y; N K,,—1)/H; is either H;.1/H;
or H;/H;. That is, H; (H;4+1 N K,,—1) must be either H; or H;,;. Removing any
nonproper inclusions from the series

H,_1>Hy 1N Ky 225 Hon Ky = {e},

we have a composition series for H,_;. Our induction hypothesis says that this
series must be equivalent to the composition series

H}'l—l DD Hl D HO = {e}
Hence, the composition series
G:Hn DHn_lD---DHlDH():{e}

and
G=H,oH, 1oH, 1 nK,,_12---2HynK,,_1 = {e}

are equivalent. If H,_; = K,,_;, then the composition series {H;} and {K;}
are equivalent and we are done; otherwise, H,_;K,,_; is a normal subgroup of
G properly containing H,_;. In this case H,_1K,-; = G and we can apply the
Second Isomorphism Theorem once again; that is,

Km—l/(Km—l n anl) = (Hn—le—l)/Hn—l = G/Hn—l'

Therefore,
G=H,>oH, 12H,.1NnKyu_12-2>HynK,;_1 ={e}
and
G=Ku;>Kyu_ 12Ky 1nH,12>--2>KonH,_;={e}
are equivalent and the proof of the theorem is complete. ]

A group G is solvable if it has a composition series {H; } such that all of the
factor groups H;,1/H; are abelian. Solvable groups will play a fundamental role
when we study Galois theory and the solution of polynomial equations.
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Example 11. The group S is solvable since

S42 Ay 2 {(1), (12)(34), (13)(24), (14)(23)} = {(1)}

has abelian factor groups; however, for n > 5 the series
Sw2 A2 {(1)}

is a composition series for S, with a nonabelian factor group. Therefore, S, is not
a solvable group for n > 5.

Exercises

1. Find all of the abelian groups of order less than or equal to 40 up to isomorphism.

2. Find all of the abelian groups of order 200 up to isomorphism.
3. Find all of the abelian groups of order 720 up to isomorphism.
4. Find all of the composition series for each of the following groups.
(@) Zp (b) Zss
(c) The quaternions, Qs (d) D4
() S3x2Z4 (f) S4
(8) Swn>5 h) ©

5. Show that the infinite direct product G = Z, x Z, x -+ is not finitely generated.

6. Let G be an abelian group of order m. If n divides m, prove that G has a subgroup of
order n.

7. A group G is a torsion group if every element of G has finite order. Prove that a finitely
generated torsion group must be finite.

8. Let G, H, and K be finitely generated abelian groups. Show that if G x H = G x K, then
H = K. Give a counterexample to show that this cannot be true in general.

9. Let G and H be solvable groups. Show that G x H is also solvable.

10. If G has a composition (principal) series and if N is a proper normal subgroup of G,
show there exists a composition (principal) series containing N.

11. Prove or disprove: Let N be a normal subgroup of G. If N and G/N have composition
series, then G must also have a composition series.

12. Let N be a normal subgroup of G. If N and G/N are solvable groups, show that G is
also a solvable group.

13. Prove that G is a solvable group if and only if G has a series of subgroups
G=P,>P,;>--2P 2P ={e}

where P; is normal in P;; and the order of P;.1/P; is prime.
14. Let G be a solvable group. Prove that any subgroup of G is also solvable.
15. Let G be a solvable group and N a normal subgroup of G. Prove that G/N is solvable.

16. Prove that D, is solvable for all integers n.
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17. Suppose that G has a composition series. If N is a normal subgroup of G, show that
N and G/N also have composition series.

18. Let G be a cyclic p-group with subgroups H and K. Prove that either H is contained
in K or K is contained in H.

19. Suppose that G is a solvable group with order n > 2. Show that G contains a normal
nontrivial abelian subgroup.

20. Recall that the commutator subgroup G’ of a group G is defined as the subgroup of
G generated by elements of the form ailbflab_for a,b € G. We can define a series of
subgroups of G by G = G, GV = G', and GV = (GO Y.

a rove that g is normal in . . e series of subgroups
(a) Prove that GU*V lin (GV)'. Th f subgroup
G(O) =G> G(l) 5 G(z) 5...

is called the derived series of G.
(b) Show that G is solvable if and only if G = {e} for some integer 7.

21. Suppose that G is a solvable group with order n > 2. Show that G contains a normal
nontrivial abelian factor group.

H nK HnK*

Figure 11.1. The Zassenhaus Lemma
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22. Zassenhaus Lemma. Let H and K be subgroups of a group G. Suppose also that H”
and K* are normal subgroups of H and K respectively. Then

(a) H*(HnNK") is a normal subgroup of H*(H n K).
(b) K*(H" nK) is a normal subgroup of K*(H n K).
© H'(HnK)/H*(HNnK*) 2K*(HnK)/K*(H* nK)
2 (HnK)/(H" nK)(HnK").
[Hint: Use the diagram in Figure 11.1. The Zassenhaus Lemma is often referred to as the
Butterfly Lemma because of this diagram.]

23. Schreier’s Theorem. Use the Zassenhaus Lemma to prove that two subnormal (nor-
mal) series of a group G have isomorphic refinements.

24. Use Schreier’s Theorem to prove the Jordan-Hoélder Theorem.

Programming Exercises

Write a program that will compute all possible abelian groups of order n. What is the
largest n for which your program will work?

References and Suggested Readings

Each of the following references contains a proof of the Fundamental Theorem of Finitely
Generated Abelian Groups.

[1] Hungerford, T. W. Algebra. Springer-Verlag, New York, 1974.
[2] Lang, S. Algebra. 3rd ed. Addison-Wesley, Reading, MA, 1992.

[3] Rotman, J.]. An Introduction to the Theory of Groups. 3rd ed. Allyn and Bacon, Boston,
1984.
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Group Actions

g roup actions generalize group multiplication. If G is a group and X is an
arbitrary set, a group action of an element g € G and x € X is a product, gx,
living in X. Many problems in algebra may best be attacked via group actions. For
example, the proofs of the Sylow theorems and of Burnside’s Counting Theorem
are most easily understood when they are formulated in terms of group actions.

12.1 Groups Acting on Sets

Let X be a set and G be a group. A (left) action of G on X isamap G x X - X
given by (g, x) — gx, where

1. ex =x forall x € X;

2. (g192)x = gi(gax) forall x € X and all gy, g5 € G.

Under these considerations X is called a G-set. Notice that we are not requiring
X to be related to G in any way. It is true that every group G acts on every set X
by the trivial action (g, x) = x; however, group actions are more interesting if
the set X is somehow related to the group G.

Example1. Let G = GL,(R) and X = R%. Then G acts on X by left multiplication.
If v € R? and I is the identity matrix, then Iv = v. If A and B are 2 x 2 invertible
matrices, then (AB)v = A(Bv) since matrix multiplication is associative.

Example 2. Let G = Dy, the symmetry group of a square. If X = {1,2, 3,4} is the
set of vertices of the square, then we can consider D, to consist of the following
permutations:

{(1), (13), (24), (1432), (1234), (12) (34), (14) (23), (13)(24) }.

The elements of D4 act on X as functions. The permutation (13)(24) acts on
vertex 1 by sending it to vertex 3, on vertex 2 by sending it to vertex 4, and so on.
It is easy to see that the axioms of a group action are satisfied.

In general, if X is any set and G is a subgroup of Sy, the group of all permu-
tations acting on X, then X is a G-set under the group action (0, x) — o(x) for
ceGandxeX.
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Example 3. If we let X = G, then every group G acts on itself by the left regular
representation; that is, (g, x) = A4(x) = gx, where A is left multiplication:

e-x=Ax=ex=x
(gh)-x =Agnx = AgApx = Ag(hx) = g- (h-x).

If H is a subgroup of G, then G is an H-set under left multiplication by elements
of H.

Example 4. Let G be a group and suppose that X = G. If H is a subgroup of G,
then G is an H-set under conjugation; that is, we can define an action of H on G,

HxG -G,

via
(h,g) = hgh™
for h € H and g € G. Clearly, the first axiom for a group action holds. Observing
- (hha, g) = hihag(hhz)™
= h(haghy' )y
= (hy, (h2, 9))»

we see that the second condition is also satisfied.

Example 5. Let H be a subgroup of G and Ly the set of left cosets of H. The set
Ly is a G-set under the action

(g,xH) —» gxH.

Again, it is easy to see that the first axiom is true. Since (gg’)xH = g(g’'xH), the
second axiom is also true.

If G actson a set X and x, y € X, then x is said to be G-equivalent to y if there
exists a g € G such that gx = y. We write x ~g y or x ~ y if two elements are
G-equivalent.

Proposition 12.1. Let X be a G-set. Then G-equivalence is an equivalence relation
on X.

Proof. The relation ~ is reflexive since ex = x. Suppose that x ~ y for x, y € X.
Then there exists a g such that gx = y. In this case g7'y = x; hence, y ~ x. To
show that the relation is transitive, suppose that x ~ y and y ~ z. Then there must
exist group elements g and h such that gx = y and hy = z. So z = hy = (hg)x,
and x is equivalent to z. ]
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If X is a G-set, then each partition of X associated with G-equivalence is called
an orbit of X under G. We will denote the orbit that contains an element x of X
by O,.

Example 6. Let G be the permutation group defined by
G ={(1), (123), (132), (45), (123)(45), (132)(45) }

and X = {1,2,3,4,5}. Then X is a G-set. The orbits are O; = O, = O3 = {1,2,3}
and O, = Os = {4,5}.

Now suppose that G is a group acting on a set X and let g be an element of
G. The fixed point set of g in X, denoted by X, is the set of all x € X such that
gx = x. We can also study the group elements g that fix a given x € X. This set is
more than a subset of G, it is a subgroup. This subgroup is called the stabilizer
subgroup or isotropy subgroup of x. We will denote the stabilizer subgroup of x
by G,.
Remark. It is important to remember that X, ¢ X and G c G.
Example 7. Let X = {1,2,3,4,5,6} and suppose that G is the permutation group
given by the permutations

{(1), (12)(3456), (35)(46), (12) (3654)}.
Then the fixed point sets of X under the action of G are

X =X
X(35)(46) = {1>2}’
X12)(3456) = X(12)(3654) = D>

and the stabilizer subgroups are

G =G, ={(1),(35)(46)},
G3=Gs=Gs=Gg = {(1)}.

It is easily seen that G, is a subgroup of G for each x € X.

Proposition 12.2. Let G be a group acting on a set X and x € X. The stabilizer
group, Gy, of x is a subgroup of G.

Proof. Clearly, e € G, since the identity fixes every element in the set X. Let
g, h € Gy. Then gx = x and hx = x. So (gh)x = g(hx) = gx = x; hence, the
product of two elements in G, is also in G. Finally, if g € Gy, then x = ex =
(g7'9)x=(97")gx =g 'x.So g isin G,. [
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We will denote the number of elements in the fixed point set of an element
g € G by|X,| and denote the number of elements in the orbit of x of x € X by |O/.
The next theorem demonstrates the relationship between orbits of an element
x € X and the left cosets of G, in G.

Theorem 12.3. Let G be a finite group and X a finite G-set. If x € X, then |O,| =
[G:G,].

Proof. We know that |G|/|G,| is the number of left cosets of G, in G by Lagrange’s
Theorem. We will define a bijective map ¢ between the orbit O, of X and the
set of left cosets L, of G, in G. Let y € O,. Then there exists a g in G such that
gx = y. Define ¢ by ¢(y) = gGy. First we must show that this map is well-defined
and does not depend on our selection of g. Suppose that / is another element in
G such that hx = y. Then gx = hx or x = g 'hx; hence, g 'h is in the stabilizer
subgroup of x. Therefore, h € gG, or gG, = hG,. Thus, y gets mapped to the
same coset regardless of the choice of the representative from that coset.

To show that ¢ is one-to-one, assume that ¢(x;) = ¢(x). Then there exist
g1 92 € G such that x; = g;x and x, = g,x. Since there exists a g € G, such that
92 = NnY,

X2 = J2X = gi1gX = gix = X15

consequently, the map ¢ is one-to-one. Finally, we must show that the map ¢ is
onto. Let gG, be aleft coset. If gx = y, then ¢(y) = gG.. ]

12.2 The Class Equation
Let X be a finite G-set and X be the set of fixed points in X; that is,

Xg={xeX:gx=xforall geG}.

Since the orbits of the action partition X,

>

|X‘ = |XG| + Z |Ox,-
i=k

where xy, . .., x, are representatives from the distinct nontrivial orbits of X.
Now consider the special case in which G acts on itself by conjugation, where
(g,x) = gxg~'. The center of G,

Z(G)={x:xg=gxforall ge G},

is the set of points that are fixed by conjugation. The nontrivial orbits of the action
are called the conjugacy classes of G. If xy, . .., x are representatives from each



THE CLASS EQUATION 185

of the nontrivial conjugacy classes of G and |Oy, | = ny, ..., |Ox,| = ng, then
G = |Z(G) + m + -+ .

The stabilizer subgroups of each of the x;’s, C(x;) = {g € G : gx; = x,g}, are
called the centralizer subgroups of the x;’s. From Theorem 12.3, we obtain the
class equation:

Gl =1Z(G)[ +[G: C(x1)] + - +[G: Cx¢)].

One of the consequences of the class equation is that the order of each conjugacy
class must divide the order of |G|.

Example 8. It is easy to check that the conjugacy classes in S5 are the following:

{(W} {(23),(132)}, {(12),(13),(23)}.

The class equation is 6 =1+ 2 + 3.

Example 9. The conjugacy classes for D, are

{(W} {(3),(24)}, {(1432), (1234)},  {(12)(34), (14)(23), (13)(24) }.

The class equationis 8 =1+ 2+ 2 + 3.

Example 10. For S, it takes a bit of work to find the conjugacy classes. We begin
with cycles. Suppose that o = (a3,. .., ay) isa cycle and let 7 € S,,. By Theorem
5-9

1017 = (1(ay), ..., 1(ag)).

Consequently, any two cycles of the same length are conjugate. Now let ¢ =
010,---0, be a cycle decomposition, where the length of each cycle o; is r;. Then
o is conjugate to every other 7 € S, whose cycle decomposition has the same
lengths.

The number of conjugate classes in S, is the number of ways in which # can
be partitioned into sums of positive integers. For example, we can partition the
integer 3 into the following three sums:

3=1+1+1, 3=14+2,and 3=3;

therefore, there are three conjugacy classes. The problem of finding the number
of such partitions for any positive integer n is what computer scientists call NP-
complete. This effectively means that the problem cannot be solved for a large
n because the computations would be too time-consuming for even the largest
computer.
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Theorem 12.4. Let G be a group of order p” where p is prime. Then G has a
nontrivial center.

Proof. We apply the class equation
|G| =1Z(G)| + ny + - + ng.

Since each n; > 1and n; | G, p must divide each n;. Also, p | |G|; hence, p must
divide | Z(G)|. Since the identity is always in the center of G, |Z(G)| > 1. Therefore,
|Z(G)| = p and there exists some g € Z(G) such that g + 1. ]

Corollary 12.5. Let G be a group of order p* where p is prime. Then G is abelian.

Proof. By Theorem 12.4, |Z(G)| = p or p*. If |Z(G)| = p?, then we are done.
Suppose that | Z(G)| = p. Then Z(G) and G/Z(G) both have order p and must
both be cyclic groups. Choosing a generator aZ(G) for G/Z(G), we can write
any element gZ(G) in the quotient group as a™ Z(G) for some integer m; hence,
g = a™x for some x in the center of G. Similarly, if hZ(G) € G/Z(G), there exists
a yin Z(G) such that h = a” y for some integer n. Since x and y are in the center
of G, they commute with all other elements of G; therefore,

gh=a"xa"y=a""xy=a"ya"x = hg,
and G must be abelian. ]

12.3 Burnside’s Counting Theorem

Suppose that we are to color the vertices of a square with two different colors, say
black and white. We might suspect that there would be 2* = 16 different colorings.
However, some of these colorings are equivalent. If we color the first vertex black
and the remaining vertices white, it is the same as coloring the second vertex black
and the remaining ones white since we could obtain the second coloring simply
by rotating the square 90° (Figure 12.1).

Burnside’s Counting Theorem offers a method of computing the number of
distinguishable ways in which something can be done. In addition to its geomet-
ric applications, the theorem has interesting applications to areas in switching
theory and chemistry. The proof of Burnside’s Counting Theorem depends on the
following lemma.

Lemma 12.6. Let X be a G-set and suppose that x ~ y. Then G, is isomorphic to
G,. In particular, |G| = |G, .
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B w w B
w w w w
w w w w
B w w B

Figure 12.1. Equivalent colorings of square

Proof. Let G act on X by (g,x) — g - x. Since x ~ y, there exists a g € G such
that g-x = y. Let a € G,. Since

gag ' -y=ga-g'y=ga-x=g-x=y,

we can define a map ¢ : Gy - G, by ¢(a) = gag™'. The map ¢ is a homomor-
phism since

¢(ab) = gabg™ = gag~ gbg™" = $(a)p(a).
Suppose that ¢(a) = ¢(b). Then gag™ = gbg™" or a = b; hence, the map is
injective. To show that ¢ is onto, let b be in G,; then g~'bg is in G, since
-1 _ -1 _ -1 S T
g bg-x=gb-gx=gby=g -y=x
and ¢(g~'bg) = b. [
Theorem 12.7 (Burnside). Let G be a finite group acting on a set X and let k
denote the number of orbits of X. Then
k= YUK
G| o

geG

Proof. We look at all the fixed points x of all the elements in g € G; that is, we
look at all g’s and all x’s such that gx = x. If viewed in terms of fixed point sets,
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the number of all g’s fixing x’s is

21Xl

geG

However, if viewed in terms of the stabilizer subgroups, this number is

Z |Gx|;

xeX

hence, 3. e |X4| = Xxex |Gx|- By Lemma 12.6,

Z |GJ’| = |Ox| : |Gx|'
yeOy

By Theorem 13.3 and Lagrange’s Theorem, this expression is equal to |G|. Summing
over all of the k distinct orbits, we conclude that

Z|Xg|= Z|Gx|=k'|G|- u

g¢G xeX

Example 1. Let X = {1,2,3,4,5} and suppose that G is the permutation group
G = {(1),(13), (13)(25), (25) }. The orbits of X are {1,3}, {2,5}, and {4}. The
fixed point sets are
X(l) = X
X(l3) = {2, 4, 5}

Xa3)(s) = {4}
X(25) = {1, 3, 4}

Burnside’s Theorem says that

1

k=—
|G|

1
Y Xgl==(5+3+1+3)=3.
g¢G 4

A Geometric Example

Before we apply Burnside’s Theorem to switching-theory problems, let us examine
the number of ways in which the vertices of a square can be colored black or white.
Notice that we can sometimes obtain equivalent colorings by simply applying a
rigid motion to the square. For instance, as we have pointed out, if we color one of
the vertices black and the remaining three white, it does not matter which vertex
was colored black since a rotation will give an equivalent coloring.
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The symmetry group of a square, Dy, is given by the following permutations:

1) (13) (24)  (1432)
(1234) (12)(34) (14)(23) (13)(24)

The group G acts on the set of vertices {1,2,3,4} in the usual manner. We can
describe the different colorings by mappings from X into Y = { B, W} where B
and W represent the colors black and white, respectively. Eachmap f: X - Y
describes a way to color the corners of the square. Every o € D, induces a
permutation ¢ of the possible colorings given by 6(f) = fo g for f: X - Y. For
example, suppose that f is defined by

fM) =8 fQ2)=W, f3)=W, f(4)=

and ¢ = (12)(34). Then G(f) = f o o sends vertex 2 to B and the remaining
vertices to W. The set of all such @ is a permutation group G on the set of possible
colorings. Let X denote the set of all possible colorings; that is, X is the set of all
possible maps from X to Y. Now we must compute the number of G-equivalence
classes.

1. 5((1) = X since the identity fixes every possible coloring. IX| =2* = 16.
2. Xv(1234) consists of all f € X such that f is unchanged by the permutation
(1234). In this case f(1) = f(2) = f(3) = f(4), so that all values of f must be

the same; that is, either f(x) = Bor f(x) = W for every vertex x of the square.
So |X(1234)| =2.

3. |X(1432)| =2

4. For )?(13)(24), f(Q) = f(3) and f(2) = f(4). Thus, |)~((13)(24)| =2’ =4

5- |55(12)(34)‘ =4

6. |X(14)(23)| =4

7. For X(13), f(1) = f(3) and the other corners can be of any color; hence,
X3 =2° =8.

8. |}~((24)| =8

By Burnside’s Theorem, we can conclude that there are exactly
1
g(24+21+22+21+22+22+23+23) =6

ways to color the vertices of the square.

Proposition 12.8. Let G be a permutation group of X and X the set of functions
from X to Y. Then there exists a permutation group G acting on X, where & € G
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is defined by 5(f) = foo foro e Gand f € X. Furthermore, if 7 is the number
of cycles in the cycle decomposition of g, then |X,| = |Y|".

Proof. Let o € G and f € X. Clearly, f o ¢ is also in X. Suppose that g is another
function from X to Y such that 6(f) = 6(g). Then for each x € X,

fla(x)) =a(f)(x) =(g)(x) = g(a(x)).

Since o is a permutation of X, every element x’ in X is the image of some x in
X under ¢; hence, f and g agree on all elements of X. Therefore, f = g and 7 is
injective. The map o ~ 0 is onto, since the two sets are the same size.

Suppose that ¢ is a permutation of X with cycle decomposition ¢ = 6,05---0,.
Any f in X, must have the same value on each cycle of o. Since there are n cycles
and |Y| possible values for each cycle, |X,| = |Y|". ]

Example 12. Let X = {1,2,...,7} and suppose that Y = {A, B,C}. If g is the
permutation of X given by (13)(245) = (13)(245)(6)(7),thenn = 4. Any f € F,
must have the same value on each cycle in g. There are |Y| = 3 such choices for
any value, so | F,| = 3* = 8L.

Example 13. Suppose that we wish to color the vertices of a square using four
different colors. By Proposition 12.8, we can immediately decide that there are

1
§(44+41+42+41+42+42+43+43)=55

possible ways.

X1 —»

X2 —»

f = (x5, %2, ..., Xn)

Xn —»

Figure 12.2. A switching function of » variables

Switching Functions

In switching theory we are concerned with the design of electronic circuits with
binary inputs and outputs. The simplest of these circuits is a switching function
that has n inputs and a single output (Figure 12.2). Large electronic circuits can
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often be constructed by combining smaller modules of this kind. The inherent
problem here is that even for a simple circuit a large number of different switching
functions can be constructed. With only four inputs and a single output, we can
construct 65, 536 different switching functions. However, we can often replace
one switching function with another merely by permuting the input leads to the
circuit (Figure 12.3).

f Hf(a,b)b>< folefba) = g(ab)

b—»

Figure 12.3. A switching function of two variables

We define a switching or Boolean function of n variables to be a function
from Z5 to Z,. Since any switching function can have two possible values for
each binary n-tuple and there are 2" binary n-tuples, 22" switching functions are
possible for n variables. In general, allowing permutations of the inputs greatly
reduces the number of different kinds of modules that are needed to build a large
circuit.

The possible switching functions with two input variables a and b are listed
in Table 12.1. Two switching functions f and g are equivalent if g can be ob-
tained from f by a permutation of the input variables. For example, g(a, b, c) =
f(b,c,a). In this case g ~ f via the permutation (acb). In the case of switching
functions of two variables, the permutation (ab) reduces 16 possible switching
functions to 12 equivalent functions since

fo~ fa

o~ s
fo ~ S
fu o~ fis

For three input variables there are 22 = 256 possible switching functions;
in the case of four variables there are 22 = 65,536. The number of equivalence
classes is too large to reasonably calculate directly. It is necessary to employ
Burnside’s Theorem.

Consider a switching function with three possible inputs, a, b, and c. As we
have mentioned, two switching functions f and g are equivalent if a permutation
of the input variables of f gives g. It is important to notice that a permutation of
the switching functions is not simply a permutation of the input values {a, b, c}.
A switching function is a set of output values for the inputs a, b, and ¢, so when
we consider equivalent switching functions, we are permuting 2> possible outputs,
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Inputs Outputs

fo i o s fo s fo S
0 0 0 0 0 0 0 0 0 0
0 1{0 0 O 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1
Inputs Outputs

fs f9 f10 f11 f12 f13 f14 f15
0 0 1 1 1 1 1 1 1 1
0 1{0 0 O 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

Table 12.1. Switching functions in two variables

not just three input values. For example, each binary triple (a, b, ¢) has a specific
output associated with it. The permutation (acb) changes outputs as follows:

(0,0,0) ~ (0,0,0)
(0,0,1) » (0,1,0)
(0,1,0) ~ (1,0,0)

(1,1,0) > (1,0,1)
(1L1L,1) > (1,1,1).

Let X be the set of output values for a switching function in # variables. Then
|X| = 2". We can enumerate these values as follows:

(0,...,0,1) > 0
(0,...,1,0) =1
0,...,L,L1) »2

(1,...,1,1) » 2" - 1.

Now let us consider a circuit with four input variables and a single output. Suppose
that we can permute the leads of any circuit according to the following permutation
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Group Number
Permutation | Switching Function Permutation of Cycles
(a) (0) 16
(ac) (2,8)(3,9)(6,12)(7,13) 12
(bd) (1,4)(3,6)(9,12)(11, 14) 12
(adch) (1,2,4,8)(3,6.12,9)(5,10)(7,14,13,11) | 6
(abed) (1,8,4,2)(3,9,12,6)(5,10)(7,11,13,14) | 6
(ab)(cd) (1,2)(4,8)(5,10)(6,9)(7,11)(13,14) 10
(ad)(bc) (1,8)(2,4)(3,12)(5,10)(7,14)(11,13) 10
(ac)(bd) (1,4)(2,8)(3,12)(6,9)(7,13)(11, 14) 10

Table 12.2. Permutations of switching functions in four variables

group:
(a) (ac) (bd) (adcb)
(abed) (ab)(cd) (ad)(bc) (ac)(bd).

The permutations of the four possible input variables induce the permutations of
the output values in Table 12.2.
Hence, there are

1
g(.216 +2-2%42.2°+3.21%) = 9616
possible switching functions of four variables under this group of permutations.

This number will be even smaller if we consider the full symmetric group on four
letters.

Historical Note

William Burnside was born in London in 1852. He attended Cambridge University from
1871 to 1875 and won the Smith’s Prize in his last year. After his graduation he lectured
at Cambridge. He was made a member of the Royal Society in 1893. Burnside wrote
approximately 150 papers on topics in applied mathematics, differential geometry, and
probability, but his most famous contributions were in group theory. Several of Burnside’s
conjectures have stimulated research to this day. One such conjecture was that every group
of odd order is solvable; that is, for a group G of odd order, there exists a sequence of
subgroups
G=H,>H,.1>-->H; 2 Hp={e}

such that H; is normal in H;1 and H;1/H; is abelian. This conjecture was finally proven by
W. Feit and J. Thompson in 1963. Burnside’s The Theory of Groups of Finite Order, published

in 1897, was one of the first books to treat groups in a modern context as opposed to
permutation groups. The second edition, published in 1911, is still a classic.
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Exercises

1. Compute the G-equivalence classes for Examples 1-5 in the first section.
2. Compute all X, and all G, for each of the following permutation groups.
@) X={1,2,3},
G =83 = {(1), (12), (13), (23), (123), (132) }
(b) X=1{1,2,3,4,5,6},
G ={(1),(12), (345), (354), (12)(345), (12)(354) }
3. Compute the G-equivalence classes of X for each of the G-sets in Exercise 2. For each
x € X verify that |G| = |Oy] - |Gx|.
4. Let G be the additive group of real numbers. Let the action of 6 € G on the real plane
R* be given by rotating the plane counterclockwise about the origin through 6 radians.
Let P be a point on the plane other than the origin.

(a) Show that R? is a G-set.
(b) Describe geometrically the orbit containing P.
(c) Find the group Gp.
5. Let G = A4 and suppose that G acts on itself by conjugation; that is, (g, #) + ghg ™.
(a) Determine the conjugacy classes (orbits) of each element of G.
(b) Determine all of the isotropy subgroups for each element of G.
6. Find the conjugacy classes and the class equation for each of the following groups.
(@) Ss (b) Ds
(©) Zo (d) Qs

7. Write the class equation for S5 and for As.

8. Ifa square remains fixed in the plane, how many different ways can the corners of the
square be colored if three colors are used?

9. How many ways can the vertices of an equilateral triangle be colored using three different
colors?

10. Find the number of ways a six-sided die can be constructed if each side is marked
differently with 1, .. ., 6 dots.

11. Up to arotation, how many ways can the faces of a cube be colored with three different
colors?

12. Consider 12 straight wires of equal lengths with their ends soldered together to form
the edges of a cube. Either silver or copper wire can be used for each edge. How many
different ways can the cube be constructed?

13. Suppose that we color each of the eight corners of a cube. Using three different colors,
how many ways can the corners be colored up to a rotation of the cube?

14. Each of the faces of a regular tetrahedron can be painted either red or white. Up to a
rotation, how many different ways can the tetrahedron be painted?

15. Suppose that the vertices of a regular hexagon are to be colored either red or white.
How many ways can this be done up to a symmetry of the hexagon?
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16. A molecule of benzene is made up of six carbon atoms and six hydrogen atoms, linked
together in a hexagonal shape as in Figure 12.4.
(a) How many different compounds can be formed by replacing one or more of the
hydrogen atoms with a chlorine atom?
(b) Find the number of different chemical compounds that can be formed by replacing
three of the six hydrogen atoms in a benzene ring with a CHj radical.

H

H

Figure 12.4. A benzene ring

17. How many equivalence classes of switching functions are there if the input variables
X1, X2, and x3 can be permuted by any permutation in S3? What if the input variables xi,
X2, X3, and x4 can be permuted by any permutation in S4?

18. How many equivalence classes of switching functions are there if the input variables
X1, X2, X3, and x4 can be permuted by any permutation in the subgroup of S generated
by the permutation (x1x2x3x4)?

19. A striped necktie has 12 bands of color. Each band can be colored by one of four
possible colors. How many possible different-colored neckties are there?

20. A group acts faithfully on a G-set X if the identity is the only element of G that leaves
every element of X fixed. Show that G acts faithfully on X if and only if no two distinct
elements of G have the same action on each element of X.

21. Let p be prime. Show that the number of different abelian groups of order p” (up to
isomorphism) is the same as the number of conjugacy classes in S,..

22. Let a € G. Show that for any g € G, gC(a)g ™' = C(gag™).

23. Let |G| = p" and suppose that | Z(G)| = p"~* for p prime. Prove that G is abelian.

24. Let G be a group with order p" where p is prime and X a finite G-set. If Xg = {x € X :
gx = x for all g € G} is the set of elements in X fixed by the group action, then prove
that | X| = |Xg| (mod p).

Programming Exercise
Write a program to compute the number of conjugacy classes in S,,. What is the largest n

for which your program will work?
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The Sylow Theorems

fWe already know that the converse of Lagrange’s Theorem is false. If G
is a group of order m and » divides m, then G does not necessarily
possess a subgroup of order n. For example, A4 has order 12 but does not possess a
subgroup of order 6. However, the Sylow Theorems do provide a partial converse
for Lagrange’s Theorem: in certain cases they guarantee us subgroups of specific
orders. These theorems yield a powerful set of tools for the classification of all
finite nonabelian groups.

13.1 The Sylow Theorems

We will use the idea of group actions to prove the Sylow Theorems. Recall for a
moment what it means for G to act on itself by conjugation and how conjugacy
classes are distributed in the group according to the class equation, discussed in
Chapter 12. A group G acts on itself by conjugation via the map (g, x) = gxg™".
Let xy, ..., xx be representatives from each of the distinct conjugacy classes of G
that consist of more than one element. Then the class equation can be written as

G =1Z(G)[+[G: C(x1)] + - +[G: C(xk)],

where Z(G) = {g € G : gx = xg forall x € G} is the center of G and C(x;) =
{g € G: gx; = x;g} is the centralizer subgroup of x;.

We now begin our investigation of the Sylow Theorems by examining sub-
groups of order p, where p is prime. A group G is a p-group if every element in G
has as its order a power of p, where p is a prime number. A subgroup of a group
G is a p-subgroup if it is a p-group.

Theorem 13.1. (Cauchy) Let G be a finite group and p a prime such that p divides
the order of G. Then G contains a subgroup of order p.

Proof. We will use induction on the order of G. If |G| = p, then clearly G must
have an element of order p. Now assume that every group of order k, where
p < k < nand p divides k, has an element of order p. Assume that |G| = n and
p | n and consider the class equation of G:

|G| =|Z(G)|+[G: C(x1)] +-+ [G: C(xx)].
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We have two cases.

Case 1. The order of one of the centralizer subgroups, C(x;), is divisible by p for
some i, i =1,..., k. In this case, by our induction hypothesis, we are done. Since
C(x;) is a proper subgroup of G and p divides |C(x;)|, C(x;) must contain an
element of order p. Hence, G must contain an element of order p.

Case 2. The order of no centralizer subgroup is divisible by p. Then p divides
[G : C(x;)], the order of each conjugacy class in the class equation; hence, p must
divide the center of G, Z(G). Since Z(G) is abelian, it must have a subgroup of
order p by the Fundamental Theorem of Finite Abelian Groups. Therefore, the
center of G contains an element of order p. ]

Corollary 13.2. Let G be a finite group. Then G is a p-group if and only if |G| = p".

Example 1. Let us consider the group As. We know that |As| = 60 = 22 -3 - 5. By
Cauchy’s Theorem, we are guaranteed that A5 has subgroups of orders 2, 3 and 5.
The Sylow Theorems give us even more information about the possible subgroups
of A 5.

We are now ready to state and prove the first of the Sylow Theorems. The
proof is very similar to the proof of Cauchy’s Theorem.

Theorem 13.3 (First Sylow Theorem). Let G be a finite group and p a prime such
that p” divides |G|. Then G contains a subgroup of order p".

Proof. We induct on the order of G once again. If |G| = p, then we are done. Now
suppose that the order of G is n with n > p and that the theorem is true for all
groups of order less than n. We shall apply the class equation once again:

|G| = |Z(G)| +[G: C(x1)] + -+ [G: C(xx)].

First suppose that p does not divide [G : C(x;)] for some i. Then p” | |C(x;)|,
since p" divides |G| = |C(x;)| - [G : C(x;)]. Now we can apply the induction
hypothesis to C(x;).

Hence, we may assume that p divides [G : C(x;)] for all i. Since p divides |G|,
the class equation says that p must divide |Z(G)|; hence, by Cauchy’s Theorem,
Z(G) has an element of order p, say g. Let N be the group generated by g. Clearly,
N is a normal subgroup of Z(G) since Z(G) is abelian; therefore, N is normal
in G since every element in Z(G) commutes with every element in G. Now
consider the factor group G/N of order |G|/p. By the induction hypothesis, G/N
contains a subgroup H of order p"~!. The inverse image of H under the canonical
homomorphism ¢ : G = G/N is a subgroup of order p" in G. ]

A Sylow p-subgroup P of a group G is a maximal p-subgroup of G. To prove
the other two Sylow Theorems, we need to consider conjugate subgroups as
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opposed to conjugate elements in a group. For a group G, let S be the collection
of all subgroups of G. For any subgroup H, S is a H-set, where H acts on S by
conjugation. That is, we have an action

HxS->S
defined by
h-K~ hKh™
for Kin S.
The set

N(H)={geG:gHg ' = H}

is a subgroup of G. Notice that H is a normal subgroup of N(H). In fact, N(H)
is the largest subgroup of G in which H is normal. We call N(H) the normalizer
of Hin G.

Lemma 13.4. Let P be a Sylow p-subgroup of a finite group G and let x have as
its order a power of p. If x'Px = P. Then x € P.

Proof. Certainly x € N(P), and the cyclic subgroup, (xP) c N(P)/P, has as its
order a power of p. By the Correspondence Theorem there exists a subgroup H
of N(P) such that H/P = (xP). Since |H| = |P| - |(xP})|, the order of H must be a
power of p. However, P is a Sylow p-subgroup contained in H. Since the order
of P is the largest power of p dividing |G|, H = P. Therefore, H/P is the trivial
subgroup and xP = P, or x € P. ]

Lemma 13.5. Let H and K be subgroups of a group G. The number of distinct
H-conjugates of K is [H : N(K) n H].

Proof. We define a bijection between the conjugacy classes of K and the right
cosets of N(K) n H by h"'Kh ~ (N(K) n H)h. To show that this map is a
bijection, let hy, h, € H and suppose that (N(K) n H)h; = (N(K) n H)h,. Then
hyhi' € N(K). Therefore, K = hyh'Khih5" or hi'Khy = h;'Kh,, and the map
is an injection. It is easy to see that this map is surjective; hence, we have a
one-to-one and onto map between the H-conjugates of K and the right cosets of
N(K)nHin H. ]

Theorem 13.6 (Second Sylow Theorem). Let G be a finite group and p a prime
dividing | G|. Then all Sylow p-subgroups of G are conjugate. That is, if P; and P,
are two Sylow p-subgroups, there exists a g € G such that gP;g™" = P,.

Proof. Let P be a Sylow p-subgroup of G and suppose that |G| = p"m and |P| = p".
Let
P = {P :Pl,Pz,...,Pk}
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consist of the distinct conjugates of P in G. By Lemma 13.5, k = [G : N(P)].
Notice that
G| = p"m = N(P)[-[G: N(P)] = [N(P)]- k.

Since p" divides |N(P)|, p cannot divide k. Given any other Sylow p-subgroup
Q, we must show that Q € P. Consider the Q-conjugacy classes of each P;.
Clearly, these conjugacy classes partition P. The size of the partition containing
P;is [Q : N(P;) n Q]. Lagrange’s Theorem tells us that this number is a divisor
of |Q| = p". Hence, the number of conjugates in every equivalence class of
the partition is a power of p. However, since p does not divide k, one of these
equivalence classes must contain only a single Sylow p-subgroup, say P;. Therefore,
for some Pj, x™'P;x = P; for all x € Q. By Lemma 13.4, P; = Q. [ ]

Theorem 13.7 (Third Sylow Theorem). Let G be a finite group and let p be a prime
dividing the order of G. Then the number of Sylow p-subgroups is congruent to 1
(mod p) and divides |G]|.

Proof. Let P be a Sylow p-subgroup acting on the set of Sylow p-subgroups,
P = {P: P],Pz,...,Pk},

by conjugation. From the proof of the Second Sylow Theorem, the only P-
conjugate of P is itself and the order of the other P-conjugacy classes is a power of
p. Each P-conjugacy class contributes a positive power of p toward |P| except the
equivalence class {P}. Since |P| is the sum of positive powers of p and 1, |P| = 1
(mod p).

Now suppose that G acts on P by conjugation. Since all Sylow p-subgroups
are conjugate, there can be only one orbit under this action. For P € P,

|P| = |orbit of P| = [G : N(P)].

But[G : N(P)]isadivisor of | G|; consequently, the number of Sylow p-subgroups
of a finite group must divide the order of the group. ]

Historical Note

Peter Ludvig Mejdell Sylow was born in 1832 in Christiania, Norway (now Oslo). After
attending Christiania University, Sylow taught high school. In 1862 he obtained a temporary
appointment at Christiania University. Even though his appointment was relatively brief,
he influenced students such as Sophus Lie (1842-1899). Sylow had a chance at a permanent
chair in 1869, but failed to obtain the appointment. In 1872, he published a 10-page paper
presenting the theorems that now bear his name. Later Lie and Sylow collaborated on a
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new edition of Abel’s works. In 1898, a chair at Christiania University was finally created
for Sylow through the efforts of his student and colleague Lie. Sylow died in 1918.

13.2 Examples and Applications

Example 2. Using the Sylow Theorems, we can determine that A5 has subgroups
of orders 2, 3, 4, and 5. The Sylow p-subgroups of As have orders 3, 4, and 5.
The Third Sylow Theorem tells us exactly how many Sylow p-subgroups As has.
Since the number of Sylow 5-subgroups must divide 60 and also be congruent
to 1 (mod 5), there are either one or six Sylow 5-subgroups in As. All Sylow
5-subgroups are conjugate. If there were only a single Sylow 5-subgroup, it would
be conjugate to itself; that is, it would be a normal subgroup of As. Since As has
no normal subgroups, this is impossible; hence, we have determined that there
are exactly six distinct Sylow 5-subgroups of As.

The Sylow Theorems allow us to prove many useful results about finite groups.
By using them, we can often conclude a great deal about groups of a particular
order if certain hypotheses are satisfied.

Theorem 13.8. If p and q are distinct primes with p < g, then every group G
of order pq has a single subgroup of order g and this subgroup is normal in G.
Hence, G cannot be simple. Furthermore, if g # 1 (mod p), then G is cyclic.

Proof. We know that G contains a subgroup H of order g. The number of con-
jugates of H divides pq and is equal to 1 + kq for k = 0,1,.... However, 1 + g is
already too large to divide the order of the group; hence, H can only be conjugate
to itself. That is, H must be normal in G.

The group G also has a Sylow p-subgroup, say K. The number of conjugates
of K must divide g and be equal to 1 + kp for k = 0,1,. ... Since q is prime, either
l+kp=qgorl+kp=1If1+kp =1, then K is normal in G. In this case, we
can easily show that G satisfies the criteria, given in Chapter 8, for the internal
direct product of H and K. Since H is isomorphic to Z,; and K is isomorphic to
Zy,G=ZpyxZy=Zp, by Theorem 8.10. [ ]

Example 3. Every group of order 15 is cyclic. This is true because 15 = 5 - 3 and
5#1 (mod 3).

Example 4. Let us classify all of the groups of order 99 = 32-11 up to isomorphism.
First we will show that every group G of order 99 is abelian. By the Third Sylow
Theorem, there are 1 + 3k Sylow 3-subgroups, each of order 9, for some k =
0,1,2,.... Also, 1 + 3k must divide 11; hence, there can only be a single normal
Sylow 3-subgroup H in G. Similarly, there are 1 + 11k Sylow 11-subgroups and
1 + 11k must divide 9. Consequently, there is only one Sylow 11-subgroup K in
G. By Corollary 12.5, any group of order p* is abelian for p prime; hence, H is
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isomorphic either to Z3 x Z3 or to Zg. Since K has order 11, it must be isomorphic
to Zy;. Therefore, the only possible groups of order 99 are Z3 x Z3 x Zy; or Zg x Zy;
up to isomorphism.

To determine all of the groups of order 5- 7 - 47 = 1645, we need the following
theorem.

Theorem 13.9. Let G’ = (aba™'b™' : a,b € G) be the subgroup consisting of
all finite products of elements of the form aba™'b™" in a group G. Then G’ is a
normal subgroup of G and G/G’ is abelian.

The subgroup G’ of G is called the commutator subgroup of G. We leave the
proof of this theorem as an exercise.

Example 5. We will now show that every group of order 5-7- 47 = 1645 is abelian,
and cyclic by Corollary 8.11. By the Third Sylow Theorem, G has only one subgroup
Hj of order 47. So G/Hj has order 35 and must be abelian by Theorem 13.8. Hence,
the commutator subgroup of G is contained in H which tells us that |G'| is either
1or 47 If |G'| =1, we are done. Suppose that |G’| = 47. The Third Sylow Theorem
tells us that G has only one subgroup of order 5 and one subgroup of order 7.
So there exist normal subgroups H, and Hj in G, where |H,| = 5 and |H3| = 7.
In either case the quotient group is abelian; hence, G’ must be a subgroup of
H;, i = 1,2. Therefore, the order of G’ is 1, 5, or 7. However, we already have
determined that |G'| = 1 or 47. So the commutator subgroup of G is trivial, and
consequently G is abelian.

Finite Simple Groups

Given a finite group, one can ask whether or not that group has any normal
subgroups. Recall that a simple group is one with no proper nontrivial normal
subgroups. As in the case of As, proving a group to be simple can be a very difficult
task; however, the Sylow Theorems are useful tools for proving that a group is not
simple. Usually some sort of counting argument is involved.

Example 6. Let us show that no group G of order 20 can be simple. By the Third
Sylow Theorem, G contains one or more Sylow 5-subgroups. The number of such
subgroups is congruent to 1 (mod 5) and must also divide 20. The only possible
such number is 1. Since there is only a single Sylow 5-subgroup and all Sylow
5-subgroups are conjugate, this subgroup must be normal.

Example 7. Let G be a finite group of order p”, n > 1 and p prime. By Theorem
12.4, G has a nontrivial center. Since the center of any group G is a normal
subgroup, G cannot be a simple group. Therefore, groups of orders 4, 8, 9, 16, 25,
27, 32, 49, 64, and 81 are not simple. In fact, the groups of order 4, 9, 25, and 49
are abelian by Corollary 12.5.
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Example 8. No group of order 56 = 2* - 7 is simple. We have seen that if we can
show that there is only one Sylow p-subgroup for some prime p dividing 56, then
this must be a normal subgroup and we are done. By the Third Sylow Theorem,
there are either one or eight Sylow 7-subgroups. If there is only a single Sylow
7-subgroup, then it must be normal.

On the other hand, suppose that there are eight Sylow 7-subgroups. Then
each of these subgroups must be cyclic; hence, the intersection of any two of these
subgroups contains only the identity of the group. This leaves 8 - 6 = 48 distinct
elements in the group, each of order 7. Now let us count Sylow 2-subgroups. There
are either one or seven Sylow 2-subgroups. Any element of a Sylow 2-subgroup
other than the identity must have as its order a power of 2; and therefore cannot
be one of the 48 elements of order 7 in the Sylow 7-subgroups. Since a Sylow
2-subgroup has order 8, there is only enough room for a single Sylow 2-subgroup
in a group of order 56. If there is only one Sylow 2-subgroup, it must be normal.

For other groups G it is more difficult to prove that G is not simple. Suppose
G has order 48. In this case the technique that we employed in the last example
will not work. We need the following lemma to prove that no group of order 48 is
simple.

Lemma 13.10. Let H and K be finite subgroups of a group G. Then

|H]- K]

|HK| = .
|HN K]

Proof. Recall that
HK = {hk:heH,keK}.

Certainly, |[HK]| < |H| - |K]| since some element in HK could be written as the
product of different elements in H and K. It is quite possible that h,k; = h,k, for
hi, hy € H and ki, k, € K. If this is the case, let

a= (h])_lhz = kl(kz)_l.
Notice that a € Hn K, since (h;)'h, isin H and k,(k;)™" is in K; consequently,

h2 = hla_l
k2 = akl.

Conversely, let h = hjb™" and k = bk, for b € Hn K. Then hk = h;k;, where
h € Hand k € K. Hence, any element hk € HK can be written in the form h;k; for
h; € H and k; € K, as many times as there are elements in H N K; that is, |H n K|
times. Therefore, |[HK| = (|H|- |K|)/|H n K|. ]
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Example 9. To demonstrate that a group G of order 48 is not simple, we will show
that G contains either a normal subgroup of order 8 or a normal subgroup of order
16. By the Third Sylow Theorem, G has either one or three Sylow 2-subgroups of
order 16. If there is only one subgroup, then it must be a normal subgroup.

Suppose that the other case is true, and two of the three Sylow 2-subgroups
are H and K. We claim that |H n K| = 8. If |H n K| < 4, then by Lemma 13.10,

16 -16
|HK| = —— = 64,
4

which is impossible. So H n K is normal in both H and K since it has index 2. The
normalizer of H N K contains both H and K, and |H n K| must both be a multiple
of 16 greater than 1 and divide 48. The only possibility is that [N(H n K)| = 48.
Hence, N(HNK) = G.

The following famous conjecture of Burnside was proved in a long and difficult
paper by Feit and Thompson [2].
Theorem 13.11. (Odd Order Theorem) Every finite simple group of nonprime

order must be of even order.

The proof of this theorem laid the groundwork for a program in the 1960s
and 1970s that classified all finite simple groups. The success of this program is
one of the outstanding achievements of modern mathematics.

Exercises

1. What are the orders of all Sylow p-subgroups where G has order 18, 24, 54, 72, and 80?
2. Find all the Sylow 3-subgroups of S4 and show that they are all conjugate.
. Show that every group of order 45 has a normal subgroup of order 9.

3
4. Let H be a Sylow p-subgroup of G. Prove that H is the only Sylow p-subgroup of G
contained in N(H).

. Prove that no group of order 96 is simple.

A W

. Prove that no group of order 160 is simple.

7. If H is a normal subgroup of a finite group G and |H| = p* for some prime p, show that
H is contained in every Sylow p-subgroup of G.

8. Let G be a group of order p*>q*, where p and q are distinct primes such that g+p* — 1
and p+4q° — 1. Prove that G must be abelian. List three pairs of primes satisfying these
conditions.

9. Show directly that a group of order 33 has only one Sylow 3-subgroup.

10. Let H be a subgroup of a group G. Prove or disprove that the normalizer of H is
normal in G.

11. Let G be a finite group divisible by a prime p. Prove that if there is only one Sylow

p-subgroup in G, it must be a normal subgroup of G.
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12. Let G be a group of order p’, p prime. Prove that G contains a normal subgroup of
order p" .

13. Suppose that G is a finite group of order p"k, where k < p. Show that G must contain
a normal subgroup.

14. Let H be a subgroup of a finite group G. Prove that gN(H)g ™' = N(gHg™") for any
geG.

15. Prove that a group of order 108 must have a normal subgroup.

16. Classify all the groups of order 175 up to isomorphism.

17. Show that every group of order 255 is cyclic.

18. Let G have order p;'---pi" and suppose that G has n Sylow p-subgroups P, ..., P,
where |Pi| = p}’. Prove that G is isomorphic to P, x -+ x P,.

19. Let P be a normal Sylow p-subgroup of G. Prove that every inner automorphism of G
fixes P.

20. What is the smallest possible order of a group G such that G is nonabelian and |G| is
0dd? Can you find such a group?

21. The Frattini Lemma. If H is a normal subgroup of a finite group G and P is a Sylow
p-subgroup of H, for each g € G show that there is an 4 in H such that gPg™" = hPh™",
Also, show that if N is the normalizer of P, then G = HN.

22. Show that if the order of G is p" g, where p and q are primes and p > g, then G contains
a normal subgroup.

23. Prove that the number of distinct conjugates of a subgroup H of a finite group G is
[G:N(H)].

24. Prove that a Sylow 2-subgroup of Ss is isomorphic to Dy.

25. Another Proof of the Sylow Theorems.
(a) Suppose p is prime and p does not divide m. Show that

k
m
o ( pp" ) '
(b) Let S denote the set of all p* element subsets of G. Show that p does not divide |S].
(c) Define an action of G on S by left multiplication, aT = {at: t € T} for a € G and
T € S. Prove that this is a group action.
(d) Prove p+|Or|forsome T € S.

(e) Let{T,..., T,} be an orbit such that ptuand H = {g € G: gT1 = T }. Prove that
H is a subgroup of G and show that |G| = u|H]|.

(f) Show that p* divides |H| and p* < [H|.
(g) Show that |H| = |Or| < p*; conclude that therefore p* = |H].

26. Let G be a group. Prove that G’ = (aba™'b™" : a, b € G) is a normal subgroup of G and
G/G’ is abelian. Find an example to show that {aba'b™" : a, b € G} is not necessarily
a group.
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Order Number | Order Number | Order Number | Order Number
1 ? 16 14 31 1 46 2
2 ? 17 1 32 51 47 1
3 ? 18 ? 33 1 48 52
4 ? 19 ? 34 ? 49 ?
5 ? 20 5 35 1 50 5
6 ? 21 ? 36 14 51 ?
7 ? 22 2 37 1 52 ?
8 ? 23 1 38 ? 53 ?
9 ? 24 ? 39 2 54 15
10 ? 25 2 40 14 55 2
11 ? 26 2 41 1 56 ?
12 5 27 5 42 ? 57 2
13 ? 28 ? 43 1 58 ?
14 ? 29 1 44 4 59 1
15 1 30 4 45 * 60 13
Table 13.1. Numbers of distinct groups G, |G| < 60
A Project

The main objective of finite group theory is to classify all possible finite groups up to

isomorphism. This problem is very difficult even if we try to classify the groups of order

less than or equal to 60. However, we can break the problem down into several intermediate

problems.

1. Find all simple groups G (|G| < 60). Do not use the Odd Order Theorem unless you are
prepared to prove it.

2. Find the number of distinct groups G, where the order of Gisnforn =1,...,60.

3. Find the actual groups (up to isomorphism) for each #.

This is a challenging project that requires a working knowledge of the group theory you

have learned up to this point. Even if you do not complete it, it will teach you a great deal

about finite groups. You can use Table 13.1 as a guide.
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Rings

ﬂ p to this point we have studied sets with a single binary operation satisfying

certain axioms, but often we are more interested in working with sets that
have two binary operations. For example, one of the most natural algebraic struc-
tures to study is the integers with the operations of addition and multiplication.
These operations are related to one another by the distributive property. If we
consider a set with two such related binary operations satisfying certain axioms,
we have an algebraic structure called a ring. In a ring we add and multiply such
elements as real numbers, complex numbers, matrices, and functions.

14.1 Rings

A nonempty set R is a ring if it has two closed binary operations, addition and
multiplication, satisfying the following conditions.

1. a+b=b+afora,beR.
.(a+b)+c=a+(b+c)fora,b,ceR.
. There is an element 0 in R such thata + 0 = g for all a € R.

2
3
4. Foreveryelement a € R, there exists an element —a in R such that a + (-a) = 0.
5. (ab)c = a(bc) fora, b, c € R.

6. Fora,b,ceR,

a(b+c)=ab+ac

(a+b)c=ac+bc.

This last condition, the distributive axiom, relates the binary operations of addition
and multiplication. Notice that the first four axioms simply require that a ring be
an abelian group under addition, so we could also have defined a ring to be an
abelian group (R, +) together with a second binary operation satisfying the fifth
and sixth conditions given above.

If there is an element 1 € R such that1 # 0 and 1a = al = a for each element
a € R, we say that R is a ring with unity or identity. A ring R for which ab = ba
for all 4, b in R is called a commutative ring. A commutative ring R with identity
is called an integral domain if, for every a, b € R such that ab = 0, eithera = 0
or b = 0. A division ring is a ring R, with an identity, in which every nonzero
element in R is a unit; that is, for each a € R with a # 0, there exists a unique
element a™! such that a™'a = aa™ = 1. A commutative division ring is called a
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field. The relationship among rings, integral domains, division rings, and fields is
shown in Figure 14.1.

Rings
Commutative Rings with
Rings Identity
Integral Division
Domains Rings
Fields

Figure 14.1. Types of rings

Example 1. As we have mentioned previously, the integers form a ring. In fact, Z
is an integral domain. Certainly if ab = 0 for two integers a and b, either a = 0
or b = 0. However, Z is not a field. There is no integer that is the multiplicative
inverse of 2, since 1/2 is not an integer. The only integers with multiplicative
inverses are 1 and -1.

Example 2. Under the ordinary operations of addition and multiplication, all of
the familiar number systems are rings: the rationals, Q; the real numbers, R; and
the complex numbers, C. Each of these rings is a field.

Example 3. We can define the product of two elements a and b in Z,, by ab
(mod n). For instance, in Z;5, 57 = 11 (mod 12). This product makes the
abelian group Z,, into a ring. Certainly Z,, is a commutative ring; however, it may
fail to be an integral domain. If we consider 3-4 = 0 (mod 12) in Zj,, it is easy to
see that a product of two nonzero elements in the ring can be equal to zero.

A nonzero element a in a ring R is called a zero divisor if there is a nonzero
element b in R such that ab = 0. In the previous example, 3 and 4 are zero divisors
in le.

Example 4. In calculus the continuous real-valued functions on an interval
[a,b] form a commutative ring. We add or multiply two functions by adding
or multiplying the values of the functions. If f(x) = x? and g(x) = cos x, then

(f+9)(x) = f(x) + g(x) = x* + cosx and (fg)(x) = f(x)g(x) = x* cos x.
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Example 5. The 2 x 2 matrices with entries in R form a ring under the usual
operations of matrix addition and multiplication. This ring is noncommutative,

since it is usually the case that AB # BA. Also, notice that we can have AB = 0
when neither A nor B is zero.

Example 6. For an example of a noncommutative division ring, let

(1) ()
(1) (i)

where i? = 1. These elements satisfy the following relations:

i2 — j2 — kZ =1

ij =k
jk =i
ki =j
i =-k
K =-i
ik =-j.

Let H consist of elements of the form a + bi + ¢j + dk, where a, b, ¢, d are real
numbers. Equivalently, H can be considered to be the set of all 2 x 2 matrices of

the form
(5 %)
—ﬁ al’

where a« = a + di and 8 = b + c¢i are complex numbers. We can define addition
and multiplication on H either by the usual matrix operations or in terms of the
generators 1, i, j, and k:

(a1 + bll + Clj + dlk) + (az + bzl + Czj + dzk) =
(a1 + az) + (bl + bz)i+ (Cl + Cz)j + (dl + dz)k

and
(a1 + bii+ cj + dik) (ay + bai + c2j + dok) = a + Bi+ yj + Ok,
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where
a=aja; —bby —cicy — did,
B =aiby + aiby + c1d, — dic,
y=aic; — bidy + cra, — dib,
0 =aydy+bicy— by —da.

Though multiplication looks complicated, it is actually a straightforward computa-
tion if we remember that we just add and multiply elements in H like polynomials
and keep in mind the relationships between the generators i, j, and k. The ring H
is called the ring of quaternions.

To show that the quaternions are a division ring, we must be able to find an
inverse for each nonzero element. Notice that

(a+bi+cj+dk)(a-bi-cj-dk)=a”+b*+c*+d>

This element can be zero only if g, b, ¢, and d are all zero. So if a + bi+ cj+dk # 0,

(a+bi+cj+dk)( a_bl_q_dk)

a?+b2+c2+d>?

Proposition 14.1. Let R be a ring with a, b € R. Then

1. a0 =0a =0;
2. a(=b) = (-a)b = —ab;
3. (—a)(-b) = ab.

Proof. To prove (1), observe that
a0 =a(0+0) = a0+ a0;

hence, a0 = 0. Similarly, 0a = 0. For (2), we have ab + a(-b) = a(b-b) = a0 = 0;
consequently, —ab = a(-b). Similarly, —ab = (-a)b. Part (3) follows directly
from (2) since (—a)(-b) = —(a(-b)) = =(-ab) = ab. ]

Just as we have subgroups of groups, we have an analogous class of substruc-
tures for rings. A subring S of a ring R is a subset S of R such that S is also a ring
under the inherited operations from R.

Example 7. The ring nZ is a subring of Z. Notice that even though the original
ring may have an identity, we do not require that its subring have an identity. We
have the following chain of subrings:

ZcQcRcC.
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The following proposition gives us some easy criteria for determining if a
subset of a ring is indeed a subring. (We will leave the proof of this proposition as
an exercise.)

Proposition 14.2. Let R be a ring and S a subset of R. Then § is a subring of R if
and only if the following conditions are satisfied.

1. S+ 0.
2. rseSforallr,seS.
3. r—seSforallr,seS.

Example 8. Let R = M, (R) be the ring of 2 x 2 matrices with entries in R. If T is
the set of upper triangular matrices in R, i.e.,

a b
T:{( 0 ¢ ).a,b,celR},

then T is a subring of R. If

a b a b
A—(O C)andB—(O c’)

are in T, then clearly A — Bis also in T. Also,

AB:( aa’ ab +,bc )

0 cc
isin T.
14.2 Integral Domains and Fields

Let us briefly recall some definitions. If R is a ring and r is a nonzero element in
R, then r is said to be a zero divisor if there is some nonzero element s € R such
that rs = 0. A commutative ring with identity is said to be an integral domain if it
has no zero divisors. If an element a in a ring R with identity has a multiplicative
inverse, we say that a is a unit. If every nonzero element in a ring R is a unit, then
R is called a division ring. A commutative division ring is called a field.

Example 9. If i = 1, then the set Z[i] = {m+ni : m, n € Z} forms a ring known
as the Gaussian integers. It is easily seen that the Gaussian integers are a subring
of the complex numbers since they are closed under addition and multiplication.
Let a = a+ bi be aunitin Z[i]. Then @ = a — bi is also a unit since if aff = 1, then
@B =1.1f = c +di, then

1=aBap = (a* +b*)(* +d*).



INTEGRAL DOMAINS AND FIELDS 213

Therefore, a? + b* must either be 1 or —1; or, equivalently, a + bi = +1 or a+bi = +i.
Therefore, units of this ring are +1 and +i; hence, the Gaussian integers are not
a field. We will leave it as an exercise to prove that the Gaussian integers are an
integral domain.

Example 10. The set of matrices

EHIHB R

with entries in Z, forms a field.

Example 11. The set Q(v/2) = {a + b\/2: a,b € Q} is a field. The inverse of an
element a + b\/2 in Q)(\/E) is

a -b \/z

+ .
a?-2b%  a?-2b?
We have the following alternative characterization of integral domains.

Proposition 14.3 (Cancellation Law). Let D be a commutative ring with identity.
Then D is an integral domain if and only if for all nonzero elements a € D with
ab = ac,wehave b = c.

Proof. Let D be an integral domain. Then D has no zero divisors. Let ab = ac
with a # 0. Then a(b—-¢) =0. Hence, b—c=0and b = c.

Conversely, let us suppose that cancellation is possible in D. That is, suppose
that ab = ac implies b = c. Let ab = 0. If a # 0, then ab = a0 or b = 0. Therefore,
a cannot be a zero divisor. ]

The following surprising theorem is due to Wedderburn.

Theorem 14.4. Every finite integral domain is a field.

Proof. Let D be a finite integral domain and D* be the set of nonzero elements of
D. We must show that every element in D* has an inverse. For each a € D* we
can defineamap A, : D* - D* by 1,(d) = ad. This map makes sense, because if
a+0andd # 0, then ad # 0. The map A, is one-to-one, since for d, d, € D*,

lel = Aa(dl) = Aa(dz) = ad2

implies d; = d; by left cancellation. Since D* is a finite set, the map A, must also
be onto; hence, for some d € D*, 1,(d) = ad = 1. Therefore, a has a left inverse.
Since D is commutative, d must also be a right inverse for a. Consequently, D is a
field. ]
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For any nonnegative integer n and any element r in aring R we write r+---+r (n
times) as nr. We define the characteristic of a ring R to be the least positive integer
n such that nr = 0 for all 7 € R. If no such integer exists, then the characteristic of
R is defined to be o.

Example 12. For every prime p, Z, is a field of characteristic p. By Proposition 2.1,
every nonzero element in Z, has an inverse; hence, Z,, is a field. If a is any nonzero
element in the field, then pa = 0, since the order of any nonzero element in the
abelian group Z, is p.

Theorem 14.5. The characteristic of an integral domain is either prime or zero.

Proof. Let D be an integral domain and suppose that the characteristic of D is n
with n # 0. If n is not prime, then n = ab, where1 < a < nand1< b < n. Since
0 = nl = (ab)l = (al)(b1) and there are no zero divisors in D, either al = 0 or
bl = 0. Hence, the characteristic of D must be less than 7, which is a contradiction.
Therefore, n must be prime. ]

14.3 Ring Homomorphisms and Ideals

In the study of groups, a homomorphism is a map that preserves the operation of
the group. Similarly, a homomorphism between rings preserves the operations
of addition and multiplication in the ring. More specifically, if R and S are rings,
then a ring homomorphism is a map ¢ : R — § satisfying

¢(a+b)=¢(a)+(b)
¢(ab) = ¢(a)$(b)

foralla,b e R.If ¢ : R — S is a one-to-one and onto homomorphism, then ¢ is
called an isomorphism of rings.

The set of elements that a ring homomorphism maps to 0 plays a fundamental
role in the theory of rings. For any ring homomorphism ¢ : R — S, we define the
kernel of a ring homomorphism to be the set

ker¢p ={reR:¢(r)=0}.

Example 13. For any integer n we can define a ring homomorphism ¢ : Z - Z,
by a = a (mod n). This is indeed a ring homomorphism, since
¢(a+b)=(a+b) (modn)
=(a (modn))+ (b (modn))
= ¢(a) +¢(b)
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and

¢(ab) =ab (mod n)
=(a (modn))-(b (modn))
= ¢(a)¢(b).
The kernel of the homomorphism ¢ is nZ.

Example 14. Let C[a, b] be the ring of continuous real-valued functions on an
interval [a, b] as in Example 4. For a fixed « € [a, b], we can define a ring ho-
momorphism ¢, : C[a,b] > Rby ¢,(f) = f(«). This is a ring homomorphism

since

¢a(f+9) = (f+9)(a) = f(a) + g(a) = o (f) + $a(g)
¢a(fg) = (f9)(a) = f(@)g(@) = da(f)$a(9)-

Ring homomorphisms of the type ¢, are called evaluation homomorphisms.

In the next proposition we will examine some fundamental properties of ring
homomorphisms. The proof of the proposition is left as an exercise.

Proposition 14.6. Let ¢ : R — S be a ring homomorphism.

1. If R is a commutative ring, then ¢(R) is a commutative ring.

2. ¢(0) =0.

3. Let 1g and 15 be the identities for R and S, respectively. If ¢ is onto, then ¢(1g) =
Is.

4. IfRisafield and ¢(R) # 0, then ¢(R) is a field.

In group theory we found that normal subgroups play a special role. These
subgroups have nice characteristics that make them more interesting to study
than arbitrary subgroups. In ring theory the objects corresponding to normal
subgroups are a special class of subrings called ideals. An ideal in aring R is a
subring I of R such that if a is in I and r is in R, then both ar and ra are in [; that
is,rIcTand IrcIforallreR.

Example 15. Every ring R has at least two ideals, {0} and R. These ideals are
called the trivial ideals.

Let R be a ring with identity and suppose that I is an ideal in R such that 1is
in R. Since for any r € R, r1 = r € I by the definition of an ideal, I = R.

Example 16. If a is any element in a commutative ring R with identity, then the
set
(a)={ar:reR}

is an ideal in R. Certainly, {(a) is nonempty since both 0 = a0 and a = al are in
(a). The sum of two elements in (a) is again in (a) since ar + ar’ = a(r +r"). The
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inverse of ar is —ar = a(-r) € (a). Finally, if we multiply an element ar € (a)
by an arbitrary element s € R, we have s(ar) = a(sr). Therefore, (a) satisfies the
definition of an ideal.

If R is a commutative ring with identity, then an ideal of the form (a) = {ar :
r € R} is called a principal ideal.

Theorem 14.7. Every ideal in the ring of integers Z is a principal ideal.

Proof. The zero ideal {0} is a principal ideal since (0) = {0}. If I is any nonzero
ideal in Z, then I must contain some positive integer m. There exists at least one
such positive integer # in I by the Principle of Well-Ordering. Now let a be any
element in I. Using the division algorithm, we know that there exist integers g
and r such that

a=nq+r

where 0 < r < n. This equation tells us that r = a — nq € I, but r must be 0 since n
is the least positive element in I. Therefore, a = nq and I = (n). ]

Example 17. The set nZ is ideal in the ring of integers. If na is in nZ and b is
in Z, then nab is in nZ as required. In fact, by Theorem 14.7, these are the only
ideals of Z.

Proposition 14.8. The kernel of any ring homomorphism ¢ : R — S is an ideal
in R.

Proof. We know from group theory that ker ¢ is an additive subgroup of R. Sup-
pose that r € R and a € ker ¢. Then we must show that ar and ra are in ker ¢.
However,

¢(ar) = ¢(a)p(r) =0¢(r) =0
and

¢(ra) = ¢(r)¢(a) = ¢(r)0 = 0. u

Remark. In our definition of an ideal we have required that rI c I and Ir c I
for all € R. Such ideals are sometimes referred to as two-sided ideals. We can
also consider one-sided ideals; that is, we may require only that either I c I or
Ir c I for r € R hold but not both. Such ideals are called left ideals and right ideals,
respectively. Of course, in a commutative ring any ideal must be two-sided. In
this text we will concentrate on two-sided ideals.

Theorem 14.9. Let I be an ideal of R. The factor group R/I is a ring with multi-
plication defined by
(r+D(s+I)=rs+1
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Proof. We already know that R/I is an abelian group under addition. Let r + I
and s + I be in R/I. We must show that the product (r + I)(s +I) = rs + I is
independent of the choice of coset; that is, if ¥’ € r+ I and s” € s + I, then r's” must
be in rs + I. Since r’ € r + I, there exists an element a in I such that 7' = r + a.
Similarly, there exists a b € I such that s’ = s + b. Notice that

r's'=(r+a)(s+b)=rs+as+rb+ab

and as + rb + ab € I since [ is an ideal; consequently, r's” € rs + I. We will leave
as an exercise the verification of the associative law for multiplication and the
distributive laws. u

The ring R/I in Theorem 14.9 is called the factor or quotient ring. Just as with
group homomorphisms and normal subgroups, there is a relationship between
ring homomorphisms and ideals.

Theorem 14.10. Let I be an ideal of R. The map y : R — R/I defined by y(r) =
r + I is a ring homomorphism of R onto R/I with kernel I.

Proof. Certainly y : R — R/I is a surjective abelian group homomorphism. It
remains to show that ¢ works correctly under ring multiplication. Let r and s be
in R. Then

y(r)y(s)=(r+D(s+I)=rs+1=y(rs),

which completes the proof of the theorem. ]

The map v : R — R/I is often called the natural or canonical homomor-
phism. In ring theory we have isomorphism theorems relating ideals and ring
homomorphisms similar to the isomorphism theorems for groups that relate
normal subgroups and homomorphisms in Chapter 9. We will prove only the
First Isomorphism Theorem for rings in this chapter and leave the proofs of the
other two theorems as exercises. All of the proofs are similar to the proofs of the
isomorphism theorems for groups.

Theorem 14.11 (First Isomorphism Theorem). Let ¢ : R — S be a ring homo-
morphism. Then ker ¢ is an ideal of R. If y : R — R/ker ¢ is the canonical
homomorphism, then there exists a unique isomorphism # : R/ker ¢ - ¢(R)
such that ¢ = ny.

Proof. Let K = ker ¢. By the First Isomorphism Theorem for groups, there exists
a well-defined group homomorphism % : R/K — y(R) defined by 5(r + K) =
y(r) for the additive abelian groups R and R/K. To show that this is a ring
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homomorphism, we need only show that #((r + K)(s + K)) = n(r + K)5(s + K);
but

7((r+K)(s+K)) =n(rs+K)
=y(rs)

=y(r)y(s)
=n(r+K)n(s+K). [

Theorem 14.12 (Second Isomorphism Theorem). Let I be a subring of a ring R
and J an ideal of R. Then I N J is an ideal of I and

HInjz(I+])]].

Theorem 14.13 (Third Isomorphism Theorem). Let R be a ring and I and ] be
ideals of R where J c I. Then

R/]

/]

Theorem 14.14. (Correspondence Theorem) Let I be a ideal of a ring R. Then
S — §/Iis a one-to-one correspondence between the set of subrings S contain-
ing I and the set of subrings of R/I. Furthermore, the ideals of R containing I
correspond to ideals of R/I.

R/T=

14.4 Maximal and Prime Ideals

In this particular section we are especially interested in certain ideals of commu-
tative rings. These ideals give us special types of factor rings. More specifically, we
would like to characterize those ideals I of a commutative ring R such that R/I is
an integral domain or a field.

A proper ideal M of a ring R is a maximal ideal of R if the ideal M is not a
proper subset of any ideal of R except R itself. That is, M is a maximal ideal if
for any ideal I properly containing M, I = R. The following theorem completely
characterizes maximal ideals for commutative rings with identity in terms of their
corresponding factor rings.

Theorem 14.15. Let R be a commutative ring with identity and M an ideal in R.
Then M is a maximal ideal of R if and only if R/M is a field.

Proof. Let M be a maximal ideal in R. If R is a commutative ring, then R/ M must
also be a commutative ring. Clearly, 1 + M acts as an identity for R/ M. We must
also show that every nonzero element in R/M has an inverse. If a + M is a nonzero
element in R/M, then a ¢ M. Define I to be the set {ra+m :r € Rand m € M}.
We will show that I is an ideal in R. The set I is nonempty since 0a + 0 = 0 is in I.
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If ria + my and r,a + m, are two elements in I, then
(rna+my) —(raa+my) =(r—r)a+ (m —my)

isin I. Also, for any r € R it is true that I c I; hence, I is closed under mul-
tiplication and satisfies the necessary conditions to be an ideal. Therefore, by
Proposition 14.2 and the definition of an ideal, I is an ideal properly containing
M. Since M is a maximal ideal, I = R; consequently, by the definition of I there
must be an m in M and a b in R such that 1 = ab + m. Therefore,

1+M=ab+M=ba+M=(a+M)(b+M).

Conversely, suppose that M is an ideal and R/M is a field. Since R/M is a field,
it must contain at least two elements: 0 + M = M and 1+ M. Hence, M is a proper
ideal of R. Let I be any ideal properly containing M. We need to show that I = R.
Choose a in I but not in M. Since a + M is a nonzero element in a field, there
exists an element b + M in R/M such that (a+ M)(b+ M) =ab+ M =1+ M.
Consequently, there exists an element m € M such that ab + m =1and lis in I.
Therefore, r1 = r € I for all r € R. Consequently, I = R. ]

Example 18. Let pZ be an ideal in Z, where p is prime. Then pZ is a maximal
ideal since Z/pZ = 7, is a field.

An ideal P in a commutative ring R is called a prime ideal if whenever ab € P,
then eithera e Por b € P.

Example 19. It is easy to check that the set P = {0,2,4,6,8,10} is an ideal in Z1,.
This ideal is prime. In fact, it is a maximal ideal.

Proposition 14.16. Let R be a commutative ring with identity. Then P is a prime
ideal in R if and only if R/P is an integral domain.

Proof. First let us assume that P is an ideal in R and R/P is an integral domain.
Suppose that ab € P. If a + P and b + P are two elements of R/P such that
(a+P)(b+P)=0+P=P,theneithera+ P=Porb+ P = P. This means that
either a is in P or b is in P, which shows that P must be prime.

Conversely, suppose that P is prime and

(a+P)(b+P)=ab+P=0+P=P.

Then ab € P. If a ¢ P, then b must be in P by the definition of a prime ideal;
hence, b + P = 0 + P and R/P is an integral domain. ]

Example 20. Every ideal in Z is of the form nZ. The factor ring Z/nZ = Z,, is an
integral domain only when # is prime. It is actually a field. Hence, the nonzero
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prime ideals in Z are the ideals pZ, where p is prime. This example really justifies
the use of the word “prime” in our definition of prime ideals.

Since every field is an integral domain, we have the following corollary.

Corollary 14.17. Every maximal ideal in a commutative ring with identity is also
a prime ideal.

Historical Note

Amalie Emmy Noether, one of the outstanding mathematicians of this century, was born
in Erlangen, Germany in 1882. She was the daughter of Max Noether (1844-1921), a
distinguished mathematician at the University of Erlangen. Together with Paul Gordon
(1837-1912), Emmy Noether’s father strongly influenced her early education. She entered the
University of Erlangen at the age of 18. Although women had been admitted to universities
in England, France, and Italy for decades, there was great resistance to their presence at
universities in Germany. Noether was one of only two women among the university’s
986 students. After completing her doctorate under Gordon in 1907, she continued to do
research at Erlangen, occasionally lecturing when her father was ill.

Noether went to Géttingen to study in 1916. David Hilbert and Felix Klein tried
unsuccessfully to secure her an appointment at Géttingen. Some of the faculty objected to
women lecturers, saying, “What will our soldiers think when they return to the university
and are expected to learn at the feet of a woman?” Hilbert, annoyed at the question,
responded, “Meine Herren, I do not see that the sex of a candidate is an argument against
her admission as a Privatdozent. After all, the Senate is not a bathhouse” At the end of
World War I, attitudes changed and conditions greatly improved for women. After Noether
passed her habilitation examination in 1919, she was given a title and was paid a small sum
for her lectures.

In 1922, Noether became a Privatdozent at Géttingen. Over the next 11 years she used
axiomatic methods to develop an abstract theory of rings and ideals. Though she was not
good at lecturing, Noether was an inspiring teacher. One of her many students was B. L.
van der Waerden, author of the first text treating abstract algebra from a modern point
of view. Some of the other mathematicians Noether influenced or closely worked with
were Alexandroff, Artin, Brauer, Courant, Hasse, Hopf, Pontryagin, von Neumann, and
Weyl. One of the high points of her career was an invitation to address the International
Congress of Mathematicians in Zurich in 1932. In spite of all the recognition she received
from her colleagues, Noether’s abilities were never recognized as they should have been
during her lifetime. She was never promoted to full professor by the Prussian academic
bureaucracy.

In 1933, Noether, a Jew, was banned from participation in all academic activities in
Germany. She emigrated to the United States, took a position at Bryn Mawr College, and
became a member of the Institute for Advanced Study at Princeton. Noether died suddenly
on April 14, 1935. After her death she was eulogized by such notable scientists as Albert
Einstein.
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14.5 An Application to Software Design

The Chinese Remainder Theorem is a result from elementary number theory about
the solution of systems of simultaneous congruences. The Chinese mathematician
Sun-tsi wrote about the theorem in the first century A.D. This theorem has some
interesting consequences in the design of software for parallel processors.

Lemma 14.18. Let m and n be positive integers such that gcd(m, n) = 1. Then for
a, b € Z the system
x=a (modm)

x=b (modn)
has a solution. If x; and x; are two solutions of the system, then x; = x, (mod mn).

Proof. The equation x = a (mod m) has a solution since a + km satisfies the
equation for all k € Z. We must show that there exists an integer k; such that

a+km=b (mod n).
This is equivalent to showing that
kim=(b-a) (mod n)

has a solution for k;. Since m and n are relatively prime, there exist integers s and
t such that ms + nt = 1. Consequently,

(b-—a)yms=(b-a)-(b-a)nt,
[((b-a)slm=(b-a) (modn).

Now let k; = (b - a)s.
To show that any two solutions are congruent modulo mn, let ¢; and ¢, be
two solutions of the system. That is,

ci=a (mod m)

ci=b (mod n)
for i =1,2. Then

c=¢; (mod m)

c=¢ (mod n).

Therefore, both m and # divide ¢; — ¢,. Consequently, ¢; = ¢; (mod mn). [ ]
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Example 21. Let us solve the system

x=3 (mod 4)
x=4 (mod>5).

Using the Euclidean algorithm, we can find integers s and t such that 4s + 5t = 1.
Two such integers are s = —1 and t = 1. Consequently,

x=a+km=3+4k =3+4[(5-4)4] =19.

Theorem 14.19 (Chinese Remainder Theorem). Let ny,n,,..., n; be positive
integers such that gcd(#n;, n;) = 1for i # j. Then for any integers ay, ..., ax, the
system

x=a; (mod ny)

x=a, (mod ny)

x=ar (mod ny)

has a solution. Furthermore, any two solutions of the system are congruent
modulo nyn,--ng.

Proof. We will use mathematical induction on the number of equations in the
system. If there are k = 2 equations, then the theorem is true by Lemma 14.18.
Now suppose that the result is true for a system of k equations or less and that we
wish to find a solution of

x=a; (mod n)

x=a, (mod ny)

X =agy (mod ngyy).

Considering the first k equations, there exists a solution that is unique modulo
ny---ng, say a. Since ny---ny and ny, are relatively prime, the system

x=a (mod ny--ny)

X =agy (mod ngyy)

has a solution that is unique modulo n; ... 1y, by the lemma. ]
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Example 22. Let us solve the system

x=3 (mod4)
x=4 (mod5)
x=1 (mod?9)
x=5 (mod 7).

From Example 21 we know that 19 is a solution of the first two congruences and
any other solution of the system is congruent to 19 (mod 20). Hence, we can
reduce the system to a system of three congruences:

x=19 (mod 20)
x=1 (mod?9)
x=5 (mod7).

Solving the next two equations, we can reduce the system to

x=19 (mod 180)
x=5 (mod7).

Solving this last system, we find that 19 is a solution for the system that is unique
up to modulo 1260.

One interesting application of the Chinese Remainder Theorem in the design
of computer software is that the theorem allows us to break up a calculation
involving large integers into several less formidable calculations. Most computers
will handle integer calculations only up to a certain size. For example, the largest
integer available on many workstations is 2*! ~1 = 2,147,483,647. Special software is
required for calculations involving larger integers which cannot be added directly
by the machine. However, by using the Chinese Remainder Theorem we can
break down large integer additions and multiplications into calculations that the
computer can handle directly. This is especially useful on parallel processing
computers which have the ability to run several programs concurrently.

Most computers have a single central processing unit (cpu), which can only
add two numbers at a time. To add a list of ten numbers, the cpu must do nine
additions in sequence. However, a parallel processing computer has more than one
cPU. A computer with 10 cpus, for example, can perform 10 different additions
at the same time. If we can take a large integer and break it down into parts,
sending each part to a different cpu, then by performing several additions or
multiplications simultaneously on those parts, we can work with an integer that
the computer would not be able to handle as a whole.
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Example 23. Suppose that we wish to multiply 2134 by 1531. We will use the
integers 95, 97, 98, and 99 because they are relatively prime. We can break down
each integer into four parts:

2134=44 (mod 95)
2134=0 (mod 97)
2134=76 (mod 98)
2134 =55 (mod 99)
and
1531=11 (mod 95)
1531=76 (mod 97)
1531=61 (mod 98)
1531=46 (mod 99).

Multiplying the corresponding equations, we obtain

2134-1531 =44-11 =9 (mod 95)
2134-1531 =0-76 =0 (mod 97)
2134-1531 =76-61 =30 (mod 98)
2134-1531 =55-46 =55 (mod 99).

Each of these four computations can be sent to a different processor if our com-
puter has several cpus. By the above calculation, we know that 2134 - 1531 is a
solution of the system

x=9 (mod 95)

x=0 (mod 97)

x=30 (mod 98)

x =55 (mod 99).

The Chinese Remainder Theorem tells us that solutions are unique up to modulo
95-97-98-99 = 89,403, 930. Solving this system of congruences for x tells us
that 2134 - 1531 = 3, 267,154.

The conversion of the computation into the four subcomputations will take
some computing time. In addition, solving the system of congruences can also
take considerable time. However, if we have many computations to be performed
on a particular set of numbers, it makes sense to transform the problem as we
have done above and to perform the necessary calculations simultaneously.
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Exercises

1. Which of the following sets are rings with respect to the usual operations of addition
and multiplication? If the set is a ring, is it also a field?

(a) 72

(b) Zss

(© Q(v2)={a+bV2:a,beQ}

d) Q(vV2,v3)={a+bV2+c\/3+dV6:a,b,c,d cQ}
(e) Z[V3]={a+bV3:a,beZ}

(f) R={a+b¥/3:a,becQ}

(g) Z[i]={a+bi: a,beZandi*=-1}

(h) Q(/3)={a+bv3+cV9:a,b,ccQ}

2. Let R be the ring of 2 x 2 matrices of the form

a b

0o 0 )
where a, b € R. Show that although R is a ring that has no identity, we can find a subring
S of R with an identity.

3. List or characterize all of the units in each of the following rings.
(@) Zwo
(b) Zp,
(© 77
(d) M(2), the 2 x 2 matrices with entries in Z
(e) M(Z>), the 2 x 2 matrices with entries in Z,

4. Find all of the ideals in each of the following rings. Which of these ideals are maximal
and which are prime?

(a) Zis
(b) Zzs
() M, (R), the 2 x 2 matrices with entries in R
(d) M(2), the 2 x 2 matrices with entries in Z
(e) Q@
5. For each of the following rings R with ideal I, give an addition table and a multiplication
table for R/I.

(@) R=ZandI=6Z
(b) R=Zpand I ={0,3,6,9}

6. Find all homomorphisms ¢ : Z/6Z — Z[15Z.

7. Prove that R is not isomorphic to C.

8. Prove or disprove: The ring @(\/2) = {a + b\/2: a, b € Q} is isomorphic to the ring
Q(V3)={a+bV/3:a,beqQ}.
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9. What is the characteristic of the field formed by the set of matrices

el V)08 0

with entries in Z,?
10. Define a map ¢ : C —» M, (R) by
N a b
¢(a+bz)—( b a )
Show that ¢ is an isomorphism of C with its image in M, (R).
11. Prove that the Gaussian integers, Z[i], are an integral domain.

12. Prove that Z[\/3i] = {a + b\/3i:a,b € Z} is an integral domain.

13. Solve each of the following systems of congruences.

(a) x=2 (mod5) (b) x=3 (mod7)
x=6 (mod11) x=0 (mod 8)

x=5 (mod 15)

©) x=2 (mod4) () x=3 (mod5)
x=4 (mod7) x=0 (mod 8)

x=7 (mod?9) x=1 (mod 11)

x=5 (mod 11) x=5 (mod 13)

14. Use the method of parallel computation outlined in the text to calculate 2234 + 4121
by dividing the calculation into four separate additions modulo 95, 97, 98, and 99.

15. Explain why the method of parallel computation outlined in the text fails for 21341531
if we attempt to break the calculation down into two smaller calculations modulo 98
and 99.

16. If R is a field, show that the only two ideals of R are {0} and R itself.
17. Let a be any element in a ring R with identity. Show that (-1)a = —a.
18. Prove that (—a)(-b) = ab for any elements a and b in a ring R.
19. Let ¢ : R — S be a ring homomorphism. Prove each of the following statements.
(a) If R is a commutative ring, then ¢(R) is a commutative ring.
(b) $(0) =0.
(c) Let 1z and 1 be the identities for R and S, respectively. If ¢ is onto, then ¢(1z) = 1s.
(d) IfRisafield and ¢(R) # 0, then ¢(R) is a field.
20. Prove that the associative law for multiplication and the distributive laws hold in R/I.

21. Prove the Second Isomorphism Theorem for rings: Let I be a subring of a ring R and
Janidealin R. Then I N J is an ideal in I and

JInj=I+]/].
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22. Prove the Third Isomorphism Theorem for rings: Let R be a ring and I and ] be ideals
of R, where J c I. Then

R/

/]

23. Prove the Correspondence Theorem: Let I be a ideal of a ring R. Then S — S/l isa
one-to-one correspondence between the set of subrings S containing I and the set of
subrings of R/I. Furthermore, the ideals of R correspond to ideals of R/I.

R/I=z

24. Let R be aring and S a subset of R. Show that § is a subring of R if and only if each of
the following conditions is satisfied.

(a) S+w.
(b) rseSforallr,seS.
(c) r—seSforallr,seS.

25. Let R be a ring with a collection of subrings { R« }. Prove that () R, is a subring of R.
Give an example to show that the union of two subrings cannot be a subring.

26. Let {I4}aea be a collection of ideals in a ring R. Prove that N4 I« is also an ideal in
R. Give an example to show that if I; and I, are ideals in R, then I; U I, may not be an
ideal.

27. Let R be an integral domain. Show that if the only ideals in R are {0} and R itself, R
must be a field.

28. Let R be a commutative ring. An element a in R is nilpotent if a” = 0 for some positive
integer n. Show that the set of all nilpotent elements forms an ideal in R.

29. A ring R is a Boolean ring if for every a € R, a* = a. Show that every Boolean ring is a
commutative ring.

30. Let R be a ring, where a® = a for all a € R. Prove that R must be a commutative ring.

31. Let R be a ring with identity 1z and S a subring of R with identity 15. Prove or disprove
that 1z = 1s.

32. If we do not require the identity of a ring to be distinct from o, we will not have a very
interesting mathematical structure. Let R be a ring such that 1 = 0. Prove that R = {0}.

33. Let S be a subset of a ring R. Prove that there is a subring R’ of R that contains S.
34. Let R be aring. Define the center of R to be

Z(R)={acR: ar=raforallreR}.

Prove that Z(R) is a commutative subring of R.

35. Let p be prime. Prove that
Zyy={a/b: a,beZandged(b,p) =1}

is a ring. The ring Z ;) is called the ring of integers localized at p.
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36. Prove or disprove: Every finite integral domain is isomorphic to Z,.
37. Let R bearing.

(a) Let u beaunitin R. Defineamapi, : R > Rbyr — uru~L. Prove that i, is an
automorphism of R. Such an automorphism of R is called an inner automorphism of
R. Denote the set of all inner automorphisms of R by Inn(R).

(b) Denote the set of all automorphisms of R by Aut(R). Prove that Inn(R) is a normal
subgroup of Aut(R).

(c) Let U(R) be the group of units in R. Prove that the map

¢ : U(R) — Inn(R)

defined by u ~ i, is a homomorphism. Determine the kernel of ¢.
(d) Compute Aut(Z), Inn(Z), and U(Z).
38. Let R and S be arbitrary rings. Show that their Cartesian product is a ring if we define
addition and multiplication in R x S by
@ (r,s)+(r',s")y=(r+r,s+5s")
(b) (r,s)(r',s") = (rr',ss")
39. An element 4 in a ring is called an idempotent if x> = x. Prove that the only idempo-

tents in an integral domain are 0 and 1. Find a ring with a idempotent x not equal to 0
orlL.

40. Let gcd(a,n) = d and ged(b, d) = 1. Prove that ax = b (mod n) does not have a
solution.

41. The Chinese Remainder Theorem for Rings. Let R be a ring and I and ] be ideals in
RsuchthatI+]=R.

(a) Show that for any r and s in R, the system of equations

x=r (modlI)
x=s (mod])

has a solution.
(b) In addition, prove that any two solutions of the system are congruent modulo I N J.
(c) LetIand J beideals in a ring R such that I + J = R. Show that there exists a ring
isomorphism

R/(InJ)=R/IxR/].
Programming Exercise

Write a computer program to simulate fast addition and multiplication using the
Chinese Remainder Theorem and the method outlined in the text.
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Polynomials

M ost people are fairly familiar with polynomials by the time they begin to
study abstract algebra. When we examine polynomial expressions such

as
p(x)=x"-3x+2

g(x) = 3x* - 6x +5,

we have a pretty good idea of what p(x) + g(x) and p(x)q(x) mean. We just add
and multiply polynomials as functions; that is,

(P +9)(x) = p(x) +4(x)
= (x* =3x+2) + (3x* —6x +5)
=x> +3x> - 9x+7
and
(pg)(x) = p(x)q(x)
= (%% - 3x +2)(3x* - 6x +5)
=3x" - 6x" — 4x” + 24x” - 27x +10.
It is probably no surprise that polynomials form a ring. In this chapter we shall
emphasize the algebraic structure of polynomials by studying polynomial rings.
We can prove many results for polynomial rings that are similar to the theorems
we proved for the integers. Analogs of prime numbers, of the division algorithm,
and of the Euclidean algorithm exist for polynomials.
15.1 Polynomial Rings

Throughout this chapter we shall assume that R is a commutative ring with identity.
Any expression of the form

n
f(x) = Zaixl =do+ax+ a2x2 ot ax”,
i=0

where a; € R and a, # 0, is called a polynomial over R with indeterminate x. The
elements ag, ai, . . ., a, are called the coefficients of f. The coefficient a,, is called
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the leading coefficient. A polynomial is called monic if the leading coefficient is 1.
If n is the largest nonnegative number for which a, # 0, we say that the degree
of f is n and write deg f(x) = n. If no such n exists—that is, if f = 0 is the zero
polynomial—then the degree of f is defined to be —co. We will denote the set of
all polynomials with coefficients in a ring R by R[x]. Two polynomials are equal
exactly when their corresponding coeflicients are equal; that is, if we let

p(x)=ag+aix+-+a,x"
q(x) =bg +byx + -+ byx™,
then p(x) = q(x) ifand only if a; = b; forall i > 0.
To show that the set of all polynomials forms a ring, we must first define

addition and multiplication. We define the sum of two polynomials as follows.

Let
p(x)=ap+ayx+-+ayx"

q(x) =bo+bix+-+by,x".

Then the sum of p(x) and g(x) is
p(x) +q(x) = co+ crx + - + crxk,

where ¢; = a; + b; for each i. We define the product of p(x) and g(x) to be

p(x)g(x) = co+ c1x + - + Conenx™ ",

where

i
ci= axbik = agh; + a1b;_y + -+ a;1by + a;by
k=0

for each i. Notice that in each case some of the coefficients may be zero.

Example 1. Suppose that
p(x) =3+ 0x + 0x* + 2x° + 0x*

and
g(x) =2+ 0x — x* + 0x” + 4x*

are polynomials in Z[x]. If the coeflicient of some term in a polynomial is zero,
then we usually just omit that term. In this case we would write p(x) = 3 + 2x>
and q(x) = 2 — x? + 4x*. The sum of these two polynomials is

p(x) +q(x) =5-x%+2x° + 4x*.



232 POLYNOMIALS

The product,
p(x)q(x) = (3+2x°)(2 - x* + 4x*) = 6 = 3x” + 4x” + 12x* - 2x° + 8«7,

can be calculated either by determining the ¢;’s in the definition or by simply
multiplying polynomials in the same way as we have always done.

Example 2. Let
p(x) =3+3x’

and
g(x) = 4 + 4x* + 4x*

be polynomials in Zj,[x]. The sum of p(x) and q(x) is 7 + 4x? + 3x> + 4x*. The
product of the two polynomials is the zero polynomial. This example tells us that
R[x] cannot be an integral domain if R is not an integral domain.

Theorem 15.1. Let R be a commutative ring with identity. Then R[x] is a commu-
tative ring with identity.

Proof. Our first task is to show that R[x] is an abelian group under polyno-
mial addition. The zero polynomial, f(x) = 0, is the additive identity. Given
a polynomial p(x) = Y7, a;x’, the inverse of p(x) is easily verified to be
-p(x) = X (-a;)x' = -=X", a;x'. Commutativity and associativity follow
immediately from the definition of polynomial addition and from the fact that
addition in R is both commutative and associative.

To show that polynomial multiplication is associative, let

= ; n A P ‘
pl) = Y ains g(x)= Y bix', r(x)= Y e’
i=0 i=0 i0
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[p(x)q(x)]r(x)
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The commutativity and distribution properties of polynomial multiplication are
proved in a similar manner. We shall leave the proofs of these properties as an
exercise. u

Proposition 15.2. Let p(x) and q(x) be polynomials in R[x], where R is an
integral domain. Then degp(x) + degq(x) = deg(p(x)q(x)). Furthermore,
R[x] is an integral domain.

Proof. Suppose that we have two nonzero polynomials
p(x)=aux™ +--+ax+ag, q(x)=byx"+--+bx+by

with a,, # 0 and b, # 0. The degrees of p and g are m and n, respectively.
The leading term of p(x)q(x) is a,,b,x™*", which cannot be zero since R is an
integral domain; hence, the degree of p(x)g(x) is m+n, and p(x)q(x) # 0. Since
p(x) # 0and q(x) # 0 imply that p(x)q(x) # 0, we know that R[x] must also
be an integral domain. ]

We also want to consider polynomials in two or more variables, such as
x* —3xy+2y. Let R be a ring and suppose that we are given two indeterminates
x and y. Certainly we can form the ring (R[x])[y]. It is straightforward but
perhaps tedious to show that (R[x])[y] 2 R([y])[x]. We shall identify these two
rings by this isomorphism and simply write R[x, y]. The ring R[x, y] is called the
ring of polynomials in two indeterminates x and y with coeflicients in R. We can
define the ring of polynomials in # indeterminates with coefficients in R similarly.
WEe shall denote this ring by R[x1, x5, ..., %,]-

Theorem 15.3. Let R be a commutative ring with identity and o € R. Then we
have a ring homomorphism ¢, : R[x] — R defined by

$a(p(x)) = p(a) = ana” + -+ ara + ao,

where p(x) = a,x" + - + a1x + ap.
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Proof. Let p(x) = ¥/ ya;x" and q(x) = X/, b;x’. It is easy to show that
b (p(x) +g(x)) = pa(p(x)) + ¢a(q(x)). To show that multiplication is pre-
served under the map ¢,, observe that

¢a(p(x))¢a(q(x)) = p(a)gq(a)

i
- (Z akbi_k) o

i=0 \k=0

= $a(p(x)q(x)). u

The map ¢, : R[x] — Ris called the evaluation homomorphism at .

15.2 The Division Algorithm

Recall that the division algorithm for integers (Theorem 1.3) says that if a and
b are integers with b > 0, then there exist unique integers g and r such that
a = bq +r, where 0 < r < b. The algorithm by which g and r are found is just long
division. A similar theorem exists for polynomials. The division algorithm for
polynomials has several important consequences. Since its proof is very similar
to the corresponding proof for integers, it is worthwhile to review Theorem 1.3 at
this point.

Theorem 15.4. (Division Algorithm) Let f(x) and g(x) be two nonzero poly-
nomials in F[x], where F is a field and g(x) is a nonconstant polynomial. Then
there exist unique polynomials q(x), r(x) € F[x] such that

f(x) = g(x)q(x) +r(x),

where either deg r(x) < deg g(x) or r(x) is the zero polynomial.

Proof. We will first consider the existence of g(x) and r(x). Let S = {f(x) -
g(x)h(x) : h(x) € F[x]} and assume that g(x) = ap + a1x + - + a,x" is a
polynomial of degree n. This set is nonempty since f(x) € S. If f(x) is the zero
polynomial, then 0 = f(x) = 0 g(x) + 0; hence, both g and r must also be the
zero polynomial.

Now suppose that the zero polynomial is not in S. In this case the degree
of every polynomial in S is nonnegative. Choose a polynomial r(x) of smallest
degree in S; hence, there must exist a g(x) € F[x] such that

r(x) = f(x) —g(x)gq(x), or f(x)=g(x)q(x) +r(x).
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We need to show that the degree of r(x) is less than the degree of g(x). Assume
that deg g(x) < degr(x). Say r(x) = by + byx + -+ + b,,x™ and m > n. Then

f(x) = g(x)[a(x) = (bm/an)x""] = f(x) = g(x)q(x) + (bm/an)x""g(x)
=1(x) + (bm/an)x""g(x)

=r(x) + byx™ + terms of lower degree

isin S. This is a polynomial of lower degree than r(x), which contradicts the fact
that r(x) is a polynomial of smallest degree in S; hence, degr(x) < deg g(x).

To show that g(x) and r(x) are unique, suppose that there exist two other
polynomials ¢’ (x) and ' (x) such that f(x) = g(x)q’(x)+7'(x) and degr'(x) <
deg g(x) or r'(x) = 0, so that

f(x) = g(x)q(x) + r(x) = g(x)q'(x) + ' (x),

and
9(x)[q(x) = q'(x)] = 1'(x) - r(x).

If g is not the zero polynomial, then

deg(g(x)[q(x) - q'(x)]) = deg(r'(x) — r(x)) > deg g (x).

However, the degrees of both r(x) and r'(x) are strictly less than the degree of
g(x); therefore, r(x) = r'(x) and q(x) = q'(x). ]

Example 3. The division algorithm merely formalizes long division of polynomi-
als, a task we have been familiar with since high school. For example, suppose
that we divide x*> — x* + 2x - 3 by x — 2.

x° + X + 4
x-2|x3 x2 + 2x - 3
x 2x?
x2 + 2x - 3
xr - 2
4x - 3
4x - 8

Hence, x* = x* +2x =3 = (x - 2)(x* + x +4) + 5.
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Let p(x) be a polynomial in F[x] and « € F. We say that « is a zero or root
of p(x) if p(x) is in the kernel of the evaluation homomorphism ¢,. All we are
really saying here is that « is a zero of p(x) if p(«t) = 0.

Corollary 15.5. Let F be a field. An element « € F is a zero of p(x) € F[x] if and
only if x — « is a factor of p(x) in F[x].

Proof. Suppose that a € F and p(«) = 0. By the division algorithm, there exist
polynomials g(x) and r(x) such that

p(x) = (x - a)q(x) +r(x)

and the degree of r(x) must be less than the degree of x — a. Since the degree of
r(x) is less than 1, r(x) = a for a € F; therefore,

p(x) = (x —a)gq(x) + a.

But
0=p(a)=0-q(x)+a=a;

consequently, p(x) = (x — a)q(x), and x — « is a factor of p(x).
Conversely, suppose that x — « is a factor of p(x); say p(x) = (x — a)q(x).
Then p(a) =0-q(x) = 0. ]

Corollary 15.6. Let F be a field. A nonzero polynomial p(x) of degree n in F[x]
can have at most #n distinct zeros in F.

Proof. We will use induction on the degree of p(x). If deg p(x) = 0, then p(x) is
a constant polynomial and has no zeros. Let deg p(x) = 1. Then p(x) = ax + b
for some a and b in F. If o; and «;, are zeros of p(x), then aa; + b = aa, + b or
o = K.

Now assume that deg p(x) > 1. If p(x) does not have a zero in F, then we are
done. On the other hand, if « is a zero of p(x), then p(x) = (x —a)g(x) for some
q(x) € F[x] by Corollary 15.5. The degree of g(x) is n—1by Proposition 15.2. Let §
be some other zero of p(x) that is distinct from «. Then p(f) = (f - a)q(f) = 0.
Since o # § and F is a field, g(8) = 0. By our induction hypothesis, p(x) can
have at most n — 1 zeros in F that are distinct from a. Therefore, p(x) has at most
n distinct zeros in F. ]

Let F be a field. A monic polynomial d(x) is a greatest common divisor of
polynomials p(x), q(x) € F[x] if d(x) evenly divides both p(x) and g(x); and,
if for any other polynomial d’(x) dividing both p(x) and q(x), d’(x) | d(x). We
write d(x) = ged(p(x),q(x)). Two polynomials p(x) and q(x) are relatively
prime if ged(p(x),q(x)) = 1.
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Proposition 15.7. Let F be a field and suppose that d(x) is the greatest common
divisor of two polynomials p(x) and g(x) in F[x]. Then there exist polynomials
r(x) and s(x) such that

d(x) =r(x)p(x) +s(x)q(x).
Furthermore, the greatest common divisor of two polynomials is unique.

Proof. Let d(x) be the monic polynomial of smallest degree in the set

§={f(x)p(x) + g(x)q(x) : f(x), g(x) € F[x]}.

We can write d(x) = r(x)p(x) + s(x)q(x) for two polynomials r(x) and s(x)
in F[x]. We need to show that d(x) divides both p(x) and g(x). We shall first
show that d(x) divides p(x). By the division algorithm, there exist polynomials
a(x) and b(x) such that p(x) = a(x)d(x) + b(x), where b(x) is either the zero
polynomial or deg b(x) < degd(x). Therefore,

b(x) = p(x) - a(x)d(x)
= p(x) —a(x)(r(x)p(x) + s(x)q(x))
= p(x) —a(x)r(x)p(x) - a(x)s(x)q(x)
= p(x)(1=a(x)r(x)) + q(x)(=a(x)s(x))

is a linear combination of p(x) and g(x) and therefore must be in S. However,
b(x) must be the zero polynomial since d(x) was chosen to be of smallest degree;
consequently, d(x) divides p(x). A symmetric argument shows that d(x) must
also divide g(x); hence, d(x) is a common divisor of p(x) and q(x).

To show that d(x) is a greatest common divisor of p(x) and g(x), suppose
that d’(x) is another common divisor of p(x) and g(x). We will show that
d’'(x) | d(x). Since d'(x) is a common divisor of p(x) and q(x), there exist
polynomials u(x) and v(x) such that p(x) = u(x)d’(x) and g(x) = v(x)d'(x).

Therefore,
d(x) =r(x)p(x) +s(x)q(x)
=r(x)u(x)d (x) +s(x)v(x)d'(x)
=d'(x)[r(x)u(x) +s(x)v(x)].
Since d’(x) | d(x), d(x) is a greatest common divisor of p(x) and q(x).
Finally, we must show that the greatest common divisor of p(x) and g(x))

is unique. Suppose that d’(x) is another greatest common divisor of p(x) and
q(x). We have just shown that there exist polynomials u(x) and v(x) in F[x]
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such that d(x) = d’(x)[r(x)u(x) + s(x)v(x)]. Since
degd(x) = degd’(x) + deg[r(x)u(x) +s(x)v(x)]

and d(x) and d’(x) are both greatest common divisors, degd(x) = degd’(x).
Since d(x) and d’(x) are both monic polynomials of the same degree, it must be
the case that d(x) = d’(x). ]

Notice the similarity between the proof of Proposition 15.7 and the proof of
Theorem 1.4.

15.3 Irreducible Polynomials

A nonconstant polynomial f(x) € F[x] is irreducible over a field F if f(x) cannot
be expressed as a product of two polynomials g(x) and h(x) in F[x], where the
degrees of g(x) and h(x) are both smaller than the degree of f(x). Irreducible
polynomials function as the “prime numbers” of polynomial rings.

Example 4. The polynomial x*-2 € Q[x] is irreducible since it cannot be factored
any further over the rational numbers. Similarly, x* + 1is irreducible over the real
numbers.

Examples. The polynomial p(x) = x> +x*+2 is irreducible over Z5[x]. Suppose
that this polynomial was reducible over Z3[x]. By the division algorithm there
would have to be a factor of the form x — a, where a is some element in Z3[x].
Hence, it would have to be true that p(a) = 0. However,

p(0)=2, p(1)=1,and p(2)=2.
Therefore, p(x) has no zeros in Z3 and must be irreducible.

Lemma 15.8. Let p(x) € Q[x]. Then
P(x) = Z(a0 + @x 4+ apx”),
s

where 1,5, o, .. ., a, are integers, the a;’s are relatively prime, and r and s are
relatively prime.

Proof. Suppose that

p(x) = bo + bx +ot b—”x”,
o O Cn
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where the b;’s and the ¢;’s are integers. We can rewrite p(x) as

1
p(x) = (do + dhx + - +dyx"),
CO.ooCn
where d, ..., d, are integers. Let d be the greatest common divisor of dy, . .., d.
Then
p(x) = (ao + aix + -+ a,x"),
Coo..cn

where d; = da; and the a;’s are relatively prime. Reducing d/(co---c,,) to its lowest
terms, we can write

r
p(x) = ;(ao +amx+ o+ ayx”),

where ged(r,s) = L. ]

Theorem 15.9 (Gauss’s Lemma). Let p(x) € Z[x] be a monic polynomial such
that p(x) factors into a product of two polynomials a(x) and S(x) in Q[x],
where the degrees of both «(x) and f3(x) are less than the degree of p(x). Then
p(x) = a(x)b(x), where a(x) and b(x) are monic polynomials in Z[x] with
dega(x) = dega(x) and deg f(x) = degb(x).

Proof. By Lemma 15.8, we can assume that
a(x) = &(ao Fax+ -+ dypx™) = ﬁocl(x)
d d
c
B(x) = (bo+bix+ o+ byx") = 2 i),
2

where the a;’s are relatively prime and the b;’s are relatively prime. Consequently,

1€

p(x) = a(x)B(x) = did, ar(x)Bi(x) = g“l(x)ﬂl(xl

where c/d is the product of ¢;/d; and ¢,/d, expressed in lowest terms. Hence,
ap(x) = car(x)Bi(x).

If d = 1, then ca,,b, = 1since p(x) is a monic polynomial. Hence, either
c =1lorc = -1 If ¢ =1, then eithera,, = b, =1lora,, = b, = -1. In
the first case p(x) = a;(x)f1(x), where a;(x) and f;(x) are monic polyno-
mials with deg ar(x) = dega;(x) and deg f(x) = deg f1(x). In the second case
a(x) = —ay(x) and b(x) = —f;1(x) are the correct monic polynomials since
p(x) = (—a1(x))(=B1(x)) = a(x)b(x). The case in which ¢ = -1 can be handled
similarly.
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Now suppose that d # 1. Since ged(c,d) = 1, there exists a prime p such
that p | d and p+c. Also, since the coefficients of a;(x) are relatively prime,
there exists a coefficient a; such that p+a;. Similarly, there exists a coefficient
b; of B1(x) such that p+b;. Let aj(x) and B{(x) be the polynomials in Z,[x]
obtained by reducing the coefficients of a;(x) and 8;(x) modulo p. Since p | d,
ai(x)Bi(x) = 01in Z,[x]. However, this is impossible since neither a{(x) nor
Bi(x) is the zero polynomial and Z,[x] is an integral domain. Therefore, d = 1
and the theorem is proven. ]

Corollary 15.10. Let p(x) = x" + a,_1x""! + -+ + ao be a polynomial with coeffi-

cients in Z and ay # 0. If p(x) has a zero in Q, then p(x) also has a zero « in Z.
Furthermore, « divides aq.

Proof. Let p(x) have a zero a € Q. Then p(x) must have a linear factor x — a. By
Gauss’s Lemma, p(x) has a factorization with a linear factor in Z[x]. Hence, for
some o € Z

p(x) = (x —a)(x" ™+ —ao/a).

Thus ag/a € Z and so « | ay. ]

Example 6. Let p(x) = x* — 2x> + x + 1. We shall show that p(x) is irreducible
over Q[x]. Assume that p(x) is reducible. Then either p(x) has a linear factor,
say p(x) = (x — a)q(x), where g(x) is a polynomial of degree three, or p(x) has
two quadratic factors.

If p(x) has a linear factor in Q[x], then it has a zero in Z. By Corollary 15.10,
any zero must divide 1 and therefore must be +1; however, p(1) = 1and p(-1) = 3.
Consequently, we have eliminated the possibility that p(x) has any linear factors.

Therefore, if p(x) is reducible it must factor into two quadratic polynomials,
say

p(x)=(x* +ax+b)(x* +cx+d)

=x*+(a+c)x’+ (ac+b+d)x*+ (ad + bc)x + bd,

where each factor is in Z[x] by Gauss’s Lemma. Hence,

a+c=-2
ac+b+d=0
ad +bc=1
bd =1.

Since bd =1, either b =d =1o0r b = d = —1. In either case b = d and so

ad+bc=b(a+c)=1
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Since a + ¢ = -2, we know that —2b = 1. This is impossible since b is an integer.
Therefore, p(x) must be irreducible over Q.

Theorem 15.11 (Eisenstein’s Criterion). Let p be a prime and suppose that
f(x)=a,x" +-+ageZ[x].

Ifp|a;fori=0,1,...,a,-, but pta, and p>+ay, then f(x) is irreducible over
Q.

Proof. By Gauss’s Lemma, we need only show that f(x) does not factor into
polynomials of lower degree in Z[x]. Let

f(x) = (byx" + -+ bg)(csx® + -+ co)

be a factorization in Z[x], with b, and ¢ not equal to zero and r, s < n. Since p?
does not divide ag = bgcy, either by or ¢y is not divisible by p. Suppose that p+b,
and p | co. Since pta, and a, = b,c;, neither b, nor ¢ is divisible by p. Let m be
the smallest value of k such that p+cy. Then

Am =boCm + bic_1 + -+ by

is not divisible by p, since each term on the right-hand side of the equation is
divisible by p except for boc,,. Therefore, m = n since a; is divisible by p for
m < n. Hence, f(x) cannot be factored into polynomials of lower degree and
therefore must be irreducible. ]

Example 7. The polynomial
p(x) =16x° - 9x* +3x% + 6x - 21

is easily seen to be irreducible over Q by Eisenstein’s Criterion if we let p = 3.

Eisenstein’s Criterion is more useful in constructing irreducible polynomials
of a certain degree over Q than in determining the irreducibility of an arbitrary
polynomial in Q[x]: given an arbitrary polynomial, it is not very likely that we
can apply Eisenstein’s Criterion. The real value of Theorem 15.11 is that we now
have an easy method of generating irreducible polynomials of any degree.

Ideals in F[x]

Let F be a field. Recall that a principal ideal in F[x] is an ideal {p(x)) generated
by some polynomial p(x); that is,

{(p(x)) = {p(x)q(x) : q(x) € F[x]}.
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Example 8. The polynomial x* in F[x] generates the ideal (x*) consisting of all
polynomials with no constant term or term of degree 1.

Theorem 15.12. If F is a field, then every ideal in F[x] is a principal ideal.

Proof. Let I be an ideal of F[x]. If I is the zero ideal, the theorem is easily true.
Suppose that I is a nontrivial ideal in F[x], and let p(x) € I be a nonzero element
of minimal degree. If deg p(x) = 0, then p(x) is a nonzero constant and 1 must
be in I. Since 1 generates all of F[x], (1) = I = F[x] and I is again a principal ideal.

Now assume that deg p(x) > landlet f(x) be any element in I. By the division
algorithm there exist g(x) and r(x) in F[x] such that f(x) = p(x)q(x) + r(x)
and degr(x) < deg p(x). Since f(x), p(x) € I and I is an ideal, r(x) = f(x) -
p(x)g(x) is also in I. However, since we chose p(x) to be of minimal degree,
r(x) must be the zero polynomial. Since we can write any element f(x) in I as
p(x)g(x) for some q(x) € F[x], it must be the case that I = (p(x)). ]

Example 9. It is not the case that every ideal in the ring F[x, y] is a principal
ideal. Consider the ideal of F[x, y] generated by the polynomials x and y. This
is the ideal of F[x, y] consisting of all polynomials with no constant term. Since
both x and y are in the ideal, no single polynomial can generate the entire ideal.

Theorem 15.13. Let F be a field and suppose that p(x) € F[x]. Then the ideal
generated by p(x) is maximal if and only if p(x) is irreducible.

Proof. Suppose that p(x) generates a maximal ideal of F[x]. Then (p(x)) is also
a prime ideal of F[x]. Since a maximal ideal must be properly contained inside
F[x], p(x) cannot be a constant polynomial. Let us assume that p(x) factors
into two polynomials of lesser degree, say p(x) = f(x)g(x). Since (p(x)) is a
prime ideal one of these factors, say f(x), is in (p(x)) and therefore be a multiple
of p(x). But this would imply that {(p(x)) c (f(x)), which is impossible since
(p(x)) is maximal.

Conversely, suppose that p(x) is irreducible over F[x]. Let I be an ideal in
F[x] containing (p(x)). By Theorem 15.12, I is a principal ideal; hence, I = (f(x))
for some f(x) € F[x]. Since p(x) € I, it must be the case that p(x) = f(x)g(x)
for some g(x) € F[x]. However, p(x) is irreducible; hence, either f(x) or g(x)
is a constant polynomial. If f(x) is constant, then I = F[x] and we are done. If
g(x) is constant, then f(x) is a constant multiple of I and I = (p(x)). Thus, there
are no proper ideals of F[x] that properly contain (p(x)). ]

Historical Note

Throughout history, the solution of polynomial equations has been a challenging problem.
The Babylonians knew how to solve the equation ax? + bx + ¢ = 0. Omar Khayyam (1048-
1131) devised methods of solving cubic equations through the use of geometric constructions
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and conic sections. The algebraic solution of the general cubic equation ax’+bx*+cx+d = 0
was not discovered until the sixteenth century. An Italian mathematician, Luca Paciola (ca.
1445-1509), wrote in Summa de Arithmetica that the solution of the cubic was impossible.
This was taken as a challenge by the mathematical community.
Scipione del Ferro (1465-1526), of the University of Bologna, solved the “depressed
cubic,
ax’ +cx+d=0.

He kept his solution an absolute secret. This may seem surprising today, when mathemati-
cians are usually very eager to publish their results, but in the days of the Italian Renaissance
secrecy was customary. Academic appointments were not easy to secure and depended
on the ability to prevail in public contests. Such challenges could be issued at any time.
Consequently, any major new discovery was a valuable weapon in such a contest. If an
opponent presented a list of problems to be solved, del Ferro could in turn present a list of
depressed cubics. He kept the secret of his discovery throughout his life, passing it on only
on his deathbed to his student Antonio Fior (ca. 1506-2).

Although Fior was not the equal of his teacher, he immediately issued a challenge to
Niccolo Fontana (1499-1557). Fontana was known as Tartaglia (the Stammerer). As a youth
he had suffered a blow from the sword of a French soldier during an attack on his village.
He survived the savage wound, but his speech was permanently impaired. Tartaglia sent
Fior a list of 30 various mathematical problems; Fior countered by sending Tartaglia a list
of 30 depressed cubics. Tartaglia would either solve all 30 of the problems or absolutely fail.
After much effort Tartaglia finally succeeded in solving the depressed cubic and defeated
Fior, who faded into obscurity.

At this point another mathematician, Gerolamo Cardano (1501-1576), entered the story.
Cardano wrote to Tartaglia, begging him for the solution to the depressed cubic. Tartaglia
refused several of his requests, then finally revealed the solution to Cardano after the latter
swore an oath not to publish the secret or to pass it on to anyone else. Using the knowledge
that he had obtained from Tartaglia, Cardano eventually solved the general cubic

3 2
ax” +bx" +cx+d=0.

Cardano shared the secret with his student, Ludovico Ferrari (1522-1565), who solved the
general quartic equation,

4 3 2
ax +bx’+cx"+dx+e=0.

In 1543, Cardano and Ferrari examined del Ferro’s papers and discovered that he had also
solved the depressed cubic. Cardano felt that this relieved him of his obligation to Tartaglia,
so he proceeded to publish the solutions in Ars Magna (1545), in which he gave credit to
del Ferro for solving the special case of the cubic. This resulted in a bitter dispute between
Cardano and Tartaglia, who published the story of the oath a year later.
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Exercises

1. List all of the polynomials of degree 3 or less in Z,[x].
2. Compute each of the following.

(@) (5x%+3x—4)+ (4x* —x+9)inZy,

(b) (5x* +3x—4)(4x* —x +9) in Zp

(¢) (7% +3x* —x) + (6x* —8x +4) in Zy

(d) (3x* +2x—4) + (4x* +2) in Zs

(e) (3x%+2x —4)(4x* +2)in Zs

(f) (5x% +3x -2)*in Zy,

3. Use the division algorithm to find g(x) and r(x) such that a(x) = g(x)b(x) + r(x)
with deg r(x) < deg b(x) for each of the following pairs of polynomials.
(@) p(x)=5x>+6x"—3x+4and g(x) = x - 2in Z;[x]

(b) p(x) = 6x* —2x> + x* =3x +1and g(x) = x* + x — 2 in Z;[x]
(©) p(x)=4x"—x> +x* + 4and g(x) = x*> - 2in Zs5[x]
(d) p(x)=x>+x’—x* —xand q(x) = x> + x in Z,[x]

4. Find the greatest common divisor of each of the following pairs p(x) and g(x) of

polynomials. If d(x) = ged(p(x), g(x)), find two polynomials a(x) and b(x) such
that a(x)p(x) + b(x)q(x) = d(x).
(@) p(x)=7x"+6x>-8x+4and q(x) = x> + x — 2, where p(x), q(x) € Q[x]
(b) p(x) = x> +x* —x+1and q(x) = x> + x — 1, where p(x), q(x) € Z,[x]
(©) p(x)=x>+x"—4x +4and q(x) = x* + 3x — 2, where p(x), g(x) € Zs[x]
(d) p(x) =x>-2x+4and q(x) = 4x° + x + 3, where p(x), g(x) € Q[x]

5. Find all of the zeros for each of the following polynomials.

(a) 5x% +4x® = x +9in Zp» (o) 5x* +2x> -3in Z,
(b) 3x*—4x*> —x +4in Zs (d) x¥*+x+1inZ,

6. Find all of the units in Z[x].

7. Find a unit p(x) in Z4[x] such that deg p(x) > 1.

8. Which of the following polynomials are irreducible over Q[x]?

@ x* -2 +2x* +x +4 (c) 3x° —4x* - 6x* +6

(b) x*—5x" +3x-2 (d) 5x° - 6x* —3x* +9x - 15
9. Find all of the irreducible polynomials of degrees 2 and 3 in Z»[x].
10. Give two different factorizations of x> + x + 8 in Z1o [x].

11. Prove or disprove: There exists a polynomial p(x) in Zs[x] of degree n with more
than n distinct zeros.

12. If Fis a field, show that F[xi, ..., x,] is an integral domain.

13. Show that the division algorithm does not hold for Z[x]. Why does it fail?

14. Prove or disprove: x* + a is irreducible for any a € Z,, where p is prime.

15. Let f(x) be irreducible. If f(x) | p(x)g(x), prove that either f(x) | p(x) or f(x) |
q(x)-
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16. Suppose that R and S are isomorphic rings. Prove that R[x] = S[x].

17. Let Fbeafieldand a € F. If p(x) € F[x], show that p(a) is the remainder obtained
when p(x) is divided by x — a.

18. Let Q" be the multiplicative group of positive rational numbers. Prove that Q* is
isomorphic to (Z[x], +).

19. Cyclotomic Polynomials. The polynomial

n
X 1 -1 -2
=x"T X" T e x+ 1

() = x -1
is called the cyclotomic polynomial. Show that @, (x) is irreducible over @ for any
prime p.

20. If F is a field, show that there are infinitely many irreducible polynomials in F[x].

21. Let R be a commutative ring with identity. Prove that multiplication is commutative
in R[x].

22. Let R be a commutative ring with identity. Prove that multiplication is distributive in
R[x].

23. Show that x* —x has p distinct zeros in Z,[x], for any prime p. Conclude that therefore

W —x=x(x-1)(x=2)(x-(p-1)).

24. Let F bearing and f(x) = ao + a1x + -+ + a,x" be in F[x]. Define f'(x) = a1 +
2a;% + - + na,x" " to be the derivative of f(x).
(a) Prove that
(f+9)'(x) = f(x) +g'(x).

Conclude that we can define a homomorphism of abelian groups D : F[x] — F[x]

by (D(£(x)) = f ().
(b) Calculate the kernel of D if charF = 0.
(c) Calculate the kernel of D if charF = p.
(d) Prove that

(f9)'(x) = f'(x)g(x) + f(x)g' ().

(e) Suppose that we can factor a polynomial f(x) € F[x] into linear factors, say

f(x) = a(x—a)(x - az)-(x - ay).

Prove that f(x) has no repeated factors if and only if f(x) and f'(x) are relatively
prime.
25. Let F be a field. Show that F[x] is never a field.
26. Let R be an integral domain. Prove that R[xy, ..., x,] is an integral domain.
27. Let R be a commutative ring with identity. Show that R[x] has a subring R isomorphic
toR.
28. Let p(x) and g(x) be polynomials in R[x], where R is a commutative ring with
identity. Prove that deg(p(x) + q(x)) < max(deg p(x),degq(x)).
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Additional Exercises: Solving the Cubic and Quartic Equations

1. Solve the general quadratic equation
ax’> +bx+c=0

to obtain
-b+Vb?-4ac
X=———#
2a

'The discriminant of the quadratic equation A = b* — 4ac determines the nature of the
solutions of the equation. If A > 0, the equation has two distinct real solutions. If A = 0,
the equation has a single repeated real root. If A < 0, there are two distinct imaginary
solutions.

2. Show that any cubic equation of the form
X+ bx’ +cex+d=0

can be reduced to the form y* + py + ¢ = 0 by making the substitution x = y — b/3.
3. Prove that the cube roots of 1 are given by

“1+iV3
w=—"—"

2
, -1-iV3
w = —
2
w =1
4. Make the substitution
p
=z—- =
y 3z

for y in the equation y* + py + g = 0 and obtain two solutions A and B for z°.
5. Show that the product of the solutions obtained in (4) is —p* /27, deducing that V/AB =
-p/3.

6. Prove that the possible solutions for z in (4) are given by
VA, wV/A, *V/A, VB, wVB, VB

and use this result to show that the three possible solutions for y are

. 3 2 . 3 2
R S ST SRE) B e T
2 27 4 2 27 4

where i = 0,1, 2.
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7. The discriminant of the cubic equation is

w
N

A=

ST

Show that y* + py +¢q =0
(a) has three real roots, at least two of which are equal, if A = 0.
(b) has one real root and two conjugate imaginary roots if A > 0.
(c) has three distinct real roots if A < 0.

8. Solve the following cubic equations.
(@) x*-4x> +11x+30=0 (c) x*-3x+2=0
(b) ¥’ -3x+5=0 (d £®+x+3=0

9. Show that the general quartic equation
x*rax’ +bx’ +ex+d=0

can be reduced to
y' +py +qy+r=0
by using the substitution x = y — a/4.
10. Show that

(yz + %z)2 =(z-p)y —qy+ (iz2 - r).
11. Show that the right-hand side of (10) can be put in the form (my + k)* if and only if
q°—4(z-p) (izz - r) =0.
12. From (11) obtain the resolvent cubic equation
2 —pz’ —4rz+ (4pr—-q°) = 0.

Solving the resolvent cubic equation, put the equation found in (10) in the form

2 1 2 2
(y + iz) = (my +k)

to obtain the solution of the quartic equation.
13. Use this method to solve the following quartic equations.
(@) x*-x*-3x+2=0 () x*-2x2+4x-3=0
®) x*+x*-7x*-x+6=0 (d) x*-4x> +3x>=5x+2=0



16

Integral ‘Domains

ne of the most important rings we study is the ring of integers. It was our

first example of an algebraic structure: the first polynomial ring that we

examined was Z[x]. We also know that the integers sit naturally inside the field

of rational numbers, Q. The ring of integers is the model for all integral domains.

In this chapter we will examine integral domains in general, answering questions

about the ideal structure of integral domains, polynomial rings over integral
domains, and whether or not an integral domain can be embedded in a field.

16.1 Fields of Fractions

Every field is also an integral domain; however, there are many integral domains
that are not fields. For example, the integers Z are an integral domain but not
a field. A question that naturally arises is how we might associate an integral
domain with a field. There is a natural way to construct the rationals @ from the
integers: the rationals can be represented as formal quotients of two integers. The
rational numbers are certainly a field. In fact, it can be shown that the rationals
are the smallest field that contains the integers. Given an integral domain D, our
question now becomes how to construct a smallest field F containing D. We will
do this in the same way as we constructed the rationals from the integers.

An element p/q € Q is the quotient of two integers p and g; however, different
pairs of integers can represent the same rational number. For instance, 1/2 = 2/4 =

3/6. We know that
a ¢

b d

if and only if ad = bc. A more formal way of considering this problem is to
examine fractions in terms of equivalence relations. We can think of elements
in Q as ordered pairs in Z x Z. A quotient p/q can be written as (p,q). For
instance, (3,7) would represent the fraction 3/7. However, there are problems if
we consider all possible pairs in Z x Z. There is no fraction 5/0 corresponding
to the pair (5,0). Also, the pairs (3,6) and (2,4) both represent the fraction
1/2. The first problem is easily solved if we require the second coordinate to be
nonzero. The second problem is solved by considering two pairs (a, b) and (¢, d)
to be equivalent if ad = bc.
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If we use the approach of ordered pairs instead of fractions, then we can study
integral domains in general. Let D be any integral domain and let

S={(a,b):a,be Dandb + 0}.
Define a relation on S by (a,b) ~ (¢,d) if ad = bc.
Lemma 16.1. The relation ~ between elements of S is an equivalence relation.

Proof. Since D is commutative, ab = ba; hence, ~ is reflexive on D. Now suppose
that (a,b) ~ (c¢,d). Then ad = bc or ¢b = da. Therefore, (¢,d) ~ (a,b)
and the relation is symmetric. Finally, to show that the relation is transitive, let
(a,b) ~ (¢,d)and (¢,d) ~ (e, f). In this case ad = bc and cf = de. Multiplying
both sides of ad = bc by f yields

afd=adf =bcf = bde = bed.
Since D is an integral domain, we can deduce that af = be or (a,b) ~ (e, f). =

We will denote the set of equivalence classes on S by Fp. We now need to
define the operations of addition and multiplication on Fp. Recall how fractions
are added and multiplied in Q:

E+£_ad+bc_
b d  bd
a c¢_ac
b d bd

It seems reasonable to define the operations of addition and multiplication on
Fp in a similar manner. If we denote the equivalence class of (a,b) € S by [a, b],
then we are led to define the operations of addition and multiplication on Fp, by

[a,b] +[c,d] = [ad + bc, bd]

and

[a,b][c,d] = [ac, bd],

respectively. The next lemma demonstrates that these operations are independent
of the choice of representatives from each equivalence class.

Lemma 16.2. The operations of addition and multiplication on Fp are well-
defined.

Proof. We will prove that the operation of addition is well-defined. The proof
that multiplication is well-defined is left as an exercise. Let [ay, b1 ] = [a2, b, ] and
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[c1,d1] = [¢2,d2]. We must show that
[ardy + bicy, bidy] = [axds + byca, badsy ]
or, equivalently, that
(ardy + bicy) (bady) = (bidy) (a2d2 + bacy).

Since [aj, 1] = [a2,b;] and [¢1, d1] = [c2, d2], we know that a;b, = bja, and
c1dy = dyc;,. Therefore,

(a1d;1 + bic1)(bady) = a1dibady + bicibad,
= aibydidy + bibycd;
= biaydidy + bibydicy
= (bid1)(azds + bycy). [

Lemma 16.3. The set of equivalence classes of S, Fp, under the equivalence rela-
tion ~, together with the operations of addition and multiplication defined by

[a,b] +[c,d] =[ad + bc,bd], [a,b]-[c,d] = [ac, bd],
is a field.

Proof. The additive and multiplicative identities are [0,1] and [1,1], respectively.
To show that [0,1] is the additive identity, observe that

[a,b] + [0,1] = [al + b0, b1] = [a, b].

It is easy to show that [1,1] is the multiplicative identity. Let [a, b] € Fp such
that a # 0. Then [b, a] is also in Fp and [a,b] - [b,a] = [1,1]; hence, [b, a] is
the multiplicative inverse for [a, b]. Similarly, [-a, b] is the additive inverse of
[a, b]. We leave as exercises the verification of the associative and commutative
properties of multiplication in Fp. We also leave it to the reader to show that Fp
is an abelian group under addition.

It remains to show that the distributive property holds in Fp; however,

[a,b][e, f] +[c. d][e, f] = [ae, bf] + [ce, df]
[aedf + bfce, bdf*]
[aed + bee, bdf]
[
(

ade + bce, bdf]
[a,b] +[c,d])[e, f] u
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The field Fp in Lemma 16.3 is called the field of fractions or field of quotients
of the integral domain D.

Theorem 16.4. Let D be an integral domain. Then D can be embedded in a field
of fractions Fp, where any element in Fp can be expressed as the quotient of
two elements in D. Furthermore, the field of fractions Fp is unique in the sense
that if E is any field containing D, then there exists a map y : Fp — E giving an
isomorphism with a subfield of E such that y(a) = a for all elements a € D.

Proof. We will first demonstrate that D can be embedded in the field Fp. Define
amap ¢ : D — Fp by ¢(a) = [a,1]. Then for a and b in D,

¢(a+b)=[a+Db,1]=[a,1]+[b,1] = ¢(a)+ ¢(b)
and
¢(ab) = [ab,1] = [a,1][b,1] = ¢(a)$(D);

hence, ¢ is a homomorphism. To show that ¢ is one-to-one, suppose that ¢(a) =
¢(b). Then [a,1] = [b,1], or a = al = 1b = b. Finally, any element of Fp can
expressed as the quotient of two elements in D, since

¢(a)[¢(0)]™" = [a,1][,1] " = [a,1] - [1, 6] = [a, b].

Now let E be a field containing D and defineamap y : Fp - Ebyy([a,b]) =
ab™'. To show that y is well-defined, let [a;, b;] = [a,, b,]. Then a b, = ba,.
Therefore, a;b;* = a,b5" and y([ay, b1]) = v([az, b2 ]).

If [a,b] and [c, d] are in Fp, then

v([a,b] +[c,d]) = w([ad + bc, bd])
= (ad + bc)(bd)™!
=ab +cd?!
=y([a,b]) +y([c, d])

and
y([a,b] - [c.d]) = y([ac, bd])

= (ac)(bd)™
=abled™
=y([a, b])y([c.d]).

Therefore, ¥ is a homomorphism.
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To complete the proof of the theorem, we need to show that y is one-to-one.
Suppose that y([a, b]) = ab™ = 0. Thena = 0b = 0and [a, b] = [0, b]. Therefore,
the kernel of y is the zero element [0, b] in Fp, and v is injective. ]

Example 1. Since Q is a field, @[ x] is an integral domain. The field of fractions
of Q[x] is the set of all rational expressions p(x)/q(x), where p(x) and g(x)
are polynomials over the rationals and q(x) is not the zero polynomial. We will
denote this field by Q(x).

We will leave the proofs of the following corollaries of Theorem 16.4 as exer-
cises.

Corollary 16.5. Let F be a field of characteristic zero. Then F contains a subfield
isomorphic to Q.

Corollary 16.6. Let F be a field of characteristic p. Then F contains a subfield
isomorphic to Z,.

16.2 Factorization in Integral Domains

The building blocks of the integers are the prime numbers. If F is a field, then
irreducible polynomials in F[x] play a role that is very similar to that of the prime
numbers in the ring of integers. Given an arbitrary integral domain, we are led to
the following series of definitions.

Let R be a commutative ring with identity, and let a and b be elements in R.
We say that a divides b, and write a | b, if there exists an element ¢ € R such that
b = ac. A unitin R is an element that has a multiplicative inverse. Two elements
a and b in R are said to be associates if there exists a unit u in R such that a = ub.

Let D be an integral domain. A nonzero element p € D that is not a unit
is said to be irreducible provided that whenever p = ab, either a or b is a unit.
Furthermore, p is prime if whenever p | ab either p| a or p | .

Example 2. It is important to notice that prime and irreducible elements do not
always coincide. Let R be the subring of @[ x, y] generated by x?, y?, and xy. Each
of these elements is irreducible in R; however, x y is not prime, since x y divides
x%y? but does not divide either x? or y?.

The Fundamental Theorem of Arithmetic states that every positive integer
n > 1 can be factored into a product of prime numbers p;---py, where the p;’s
are not necessarily distinct. We also know that such factorizations are unique
up to the order of the p;’s. We can easily extend this result to the integers. The
question arises of whether or not such factorizations are possible in other rings.
Generalizing this definition, we say an integral domain D is a unique factorization
domain, or UFD, if D satisfies the following criteria.
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1. Let a € D such that a # 0 and a is not a unit. Then a can be written as the
product of irreducible elements in D.

2. Leta = py--pr = q1---qs, where the p;’s and the g;’s are irreducible. Thenr =5
and thereis a 7 € S such that p; = q,(j) for j=1,...,r=s.

Example 3. The integers are a unique factorization domain by the Fundamental
Theorem of Arithmetic.

Example 4. Not every integral domain is a unique factorization domain. The
subring Z[\/3i] = {a + b\/3 i} of the complex numbers is an integral domain
(Exercise 12, Chapter 14). Let z = a + b\/3 i and define v : Z[\/3i] - Nu {0} by
v(z) = |z]* = a* + 3b%. 1t is clear that v(z) > 0 with equality when z = 0. Also,
from our knowledge of complex numbers we know that v(zw) = v(z)v(w). It is
easy to show that if v(z) = 1, then z is a unit, and that the only units of Z[\/3 ]
areland -1
We claim that 4 has two distinct factorizations into irreducible elements:

4=2-2=(1-V3i)(1+3i).

We must show that each of these factors is an irreducible element in Z[\/3 i]. If 2 is
not irreducible, then 2 = zw for elements z, w in Z[\/3 i] where v(z) = v(w) = 2.
However, there does not exist an element in z in Z[\/3 ] such that v(z) = 2
because the equation a? + 3b? = 2 has no integer solutions. Therefore, 2 must
be irreducible. A similar argument shows that both 1 - V3iand1++/3iare
irreducible. Since 2 is not a unit multiple of either 1 - v/3i or 1+ /3 i, 4 has at
least two distinct factorizations into irreducible elements.

Principal Ideal Domains

Let R be a commutative ring with identity. Recall that a principal ideal generated
by a € R is an ideal of the form (a) = {ra : r € R}. An integral domain in which
every ideal is principal is called a principal ideal domain, or PID.

Lemma 16.7. Let D be an integral domain and let a, b € D. Then
1. a|b < (b) c{a).

2. a and b are associates < (b) = (a).

3. aisaunitin D < (a) = D.

Proof. (1) Suppose that a | b. Then b = ax for some x € D. Hence, for every r in
D, br = (ax)r = a(xr) and (b) c (a). Conversely, suppose that (b) c (a). Then
b € (a). Consequently, b = ax for some x € D. Thus, a | b.

(2) Since a and b are associates, there exists a unit u such that a = ub. Therefore,
b| aand (a) c (b). Similarly, (b) c (a). It follows that (a) = (b). Conversely,
suppose that (a) = (b). By part (1), a | band b | a. Then a = bx and b = ay for
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some x, y € D. Therefore, a = bx = ayx. Since D is an integral domain, xy = 1;
that is, x and y are units and a and b are associates.

(3) An element a € D is a unit if and only if 4 is an associate of 1. However, a
is an associate of 1 if and only if (a) = (1) = D. [

Theorem 16.8. Let D be a pip and (p) be a nonzero ideal in D. Then (p) is a
maximal ideal if and only if p is irreducible.

Proof. Suppose that (p) is a maximal ideal. If some element a in D divides p,
then (p) c (a). Since (p) is maximal, either D = (a) or (p) = (a). Consequently,
either a and p are associates or a is a unit. Therefore, p is irreducible.
Conversely, let p be irreducible. If (a) is an ideal in D such that (p) c (a) c D,
then a | p. Since p is irreducible, either a must be a unit or a and p are associates.
Therefore, either D = (a) or (p) = (a). Thus, (p) is a maximal ideal. ]

Corollary 16.9. Let D be a pIp. If p is irreducible, then p is prime.

Proof. Let p be irreducible and suppose that p | ab. Then (ab) c (p). By Corol-
lary 14.17, since (p) is a maximal ideal, {p) must also be a prime ideal. Thus, either
a € (p)orbe(p). Hence, either p | a or p | b. ]

Lemma16.10. Let DbeaPiD. Let I, I,,... beaset of ideals such thatI; c I, c ---.
Then there exists an integer N such that I,, = Iy forall n > N.

Proof. We claim that I = U2, is an ideal of D. Certainly I is not empty, since
IiclandOel. Ifa,bel thenael;and b ¢ I; for some i and jin N. Without
loss of generality we can assume that i < j. Hence, a and b are both in I; and so
a—-bisalsoinI;. Nowletr € D and a € I. Again, we note that a € I; for some
positive integer i. Since I; is an ideal, ra € I; and hence must be in I. Therefore,
we have shown that I is an ideal in D.

Since D is a principal ideal domain, there exists an element a € D that generates
I. Since @ is in Iy for some N € N, we know that Iy = I = (a). Consequently,
I, = Iy forn > N. [ ]

Any commutative ring satisfying the condition in Lemma 16.10 is said to
satisfy the ascending chain condition, or Acc. Such rings are called Noetherian
rings, after Emmy Noether.

Theorem 16.11. Every PID is a UFD.

Proof. Existence of a factorization. Let D be a pID and a be a nonzero element in
D that is not a unit. If a is irreducible, then we are done. If not, then there exists
a factorization a = a; by, where neither a; nor b, is a unit. Hence, (a) c (a;). By
Lemma 16.7, we know that (a) # (a;); otherwise, a and a; would be associates
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and b; would be a unit, which would contradict our assumption. Now suppose
that a; = a,b,, where neither a, nor b, is a unit. By the same argument as before,
(a1) c (a2). We can continue with this construction to obtain an ascending chain
of ideals

(a) c (@) c (az) c .

By Lemma 16.10, there exists a positive integer N such that (a,) = (ay) for all
n > N. Consequently, ay must be irreducible. We have now shown that a is the
product of two elements, one of which must be irreducible.

Now suppose that a = ¢; p;, where p; is irreducible. If ¢; is not a unit, we can
repeat the preceding argument to conclude that (a) c {c;). Either ¢ is irreducible
or ¢; = C3p3, Where p, is irreducible and ¢, is not a unit. Continuing in this
manner, we obtain another chain of ideals

{a) c{a) e {ca) c .

This chain must satisfy the ascending chain condition; therefore,

a=piprpr

for irreducible elements py, ..., pr.
Uniqueness of the factorization. To show uniqueness, let

a=pip2Pr=q192°*9s,

where each p; and each g; is irreducible. Without loss of generality, we can assume
that r < s. Since p; divides q142---¢s, by Corollary 16.9 it must divide some g;. By
rearranging the g;’s, we can assume that p; | g;; hence, q; = u; p; for some unit
in D. Therefore,

a = pipa--Pr = uUi1p192---gs
or
Do Py = Urqa--+s.
Continuing in this manner, we can arrange the g;’s such that p, = g2, p3 =
q3s.-.>Pr = qr» to obtain

WU Urqrer-qs = L.

In this case g4+1---q5 is a unit, which contradicts the fact that g,1,..., g, are
irreducibles. Therefore, r = s and the factorization of a is unique. ]

Corollary 16.12. Let F be a field. Then F[x] is a UFD.
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Example 5. Every PID is a UFD, but it is not the case that every UFD is a PID. In
Corollary 16.22, we will prove that Z[x] is a urp. However, Z[x] is not a pID. Let
I={5f(x)+xg(x): f(x),g(x) € Z[x]}. We can easily show that I is an ideal of
Z[x]. Suppose that I = (p(x)). Since 5 € I,5 = f(x)p(x). In this case p(x) = p
must be a constant. Since x € I, x = pg(x); consequently, p = +1. However,
it follows from this fact that (p(x)) = Z[x]. But this would mean that 3 is in
I. Therefore, we can write 3 = 5f(x) + xg(x) for some f(x) and g(x) in Z[x].
Examining the constant term of this polynomial, we see that 3 = 5f(x), which is
impossible.

Euclidean Domains

We have repeatedly used the division algorithm when proving results about either
Z or F[x], where F is a field. We should now ask when a division algorithm is
available for an integral domain.

Let D be an integral domain such that for each a € D there is a nonnegative
integer v(a) satisfying the following conditions.
1. If a and b are nonzero elements in D, then v(a) < v(ab).

2. Let a, b € D and suppose that b # 0. Then there exist elements g, 7 € D such
that a = bq + r and either r = 0 or v(r) < v(b).

Then D is called a Euclidean domain and v is called a Euclidean valuation.
Example 6. Absolute value on Z is a Euclidean valuation.

Example 7. Let F beafield. Then the degree of a polynomial in F[x] is a Euclidean
valuation.

Example 8. Recall that the Gaussian integers in Example 9 of Chapter 14 are
defined by
Z[i]={a+bi:a,beZ}.

We usually measure the size of a complex number a + bi by its absolute value,
|a + bi| = V/a? + b?; however, /a2 + b? may not be an integer. For our valuation
we will let v(a + bi) = a* + b* to ensure that we have an integer.

We claim that v(a + bi) = a* + b* is a Euclidean valuation on Z[i]. Let
z,w € Z[i]. Then v(zw) = |zw|* = |2]*|w|* = v(2)v(w). Since v(z) > 1 for every
nonzero z € Z[i], v(z) = v(z)v(w).

Next, we must show that for any z = a + bi and w = ¢ + di in Z[i] with w # 0,
there exist elements g and r in Z[i] such that z = qw + r with either r = 0 or
v(r) < v(w). We can view z and w as elements in Q(i) = {p + qi : p,q € Q}, the
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field of fractions of Z[i]. Observe that

-1 . c—di
zw :(ﬂ+bl)m
ac+bd bc-ad,

+ i

c2+d* 2+ d?

( M ) ( ny .

my+ ——— |+ |my+ ——= i
2 +d? c? +d?

(my + mai) m + ny .
=(m+myi)+| 5—— + 5——i
c2+d* 2+d?

= (my + myi) + (s + ti)

in Q(i). In the last steps we are writing the real and imaginary parts as an inte-
ger plus a proper fraction. That is, we take the closest integer m; such that the
fractional part satisfies |n;/(a* + b*)| < 1/2. For example, we write

Il
—
+

©| G5 w0
I

[\®)

|
|~ o~

Thus, s and ¢ are the “fractional parts” of zw ™ = (m; + myi) + (s + ti). We also

know that s* + t* <1/4 + 1/4 = 1/2. Multiplying by w, we have

z=zw'w = w(my + myi) + w(s +ti) = qw +r,
where g = m; + myi and r = w(s + ti). Since z and qw are in Z[i], r must be in
Z[i]. Finally, we need to show that either r = 0 or v(r) < v(w). However,

v(r) =v(w)v(s+ti) < %V(W) <v(w).

Theorem 16.13. Every Euclidean domain is a principal ideal domain.

Proof. Let D be a Euclidean domain and let v be a Euclidean valuation on D.
Suppose I is a nontrivial ideal in D and choose a nonzero element b € I such that
v(b) is minimal for all a € I. Since D is a Euclidean domain, there exist elements
q and r in D such that a = bq + r and either r = 0 or v(r) < v(b). But r = a — bq
is in I since I is an ideal; therefore, r = 0 by the minimality of b. It follows that
a=bgand]I = (b). ]

Corollary 16.14. Every Euclidean domain is a unique factorization domain.
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Factorization in D[x]

One of the most important polynomial rings is Z[x]. One of the first questions
that come to mind about Z[x] is whether or not it is a urD. We will prove a more
general statement here. Our first task is to obtain a more general version of Gauss’s
Lemma (Theorem 15.9).

Let D be a unique factorization domain and suppose that

p(x)=a,x" ++a1x +ag

in D[x]. Then the content of p(x) is the greatest common divisor of gy, ..., a;.
We say that p(x) is primitive if gcd(ao, ..., a,) = 1.

Example 9. In Z[x] the polynomial p(x) = 5x* — 3x*> + x — 4 is a primitive
polynomial since the greatest common divisor of the coefficients is 1; however,
the polynomial g(x) = 4x* — 6x + 8 is not primitive since the content of q(x) is 2.

Theorem 16.15 (Gauss's Lemma). Let D be a urD and let f(x) and g(x) be prim-
itive polynomials in D[x]. Then f(x)g(x) is primitive.

Proof. Let f(x) = ¥7,a;x" and g(x) = X", bix'. Suppose that p is a prime
dividing the coefficients of f(x)g(x). Let r be the smallest integer such that p+a,
and s be the smallest integer such that p4b;. The coefficient of x** in f(x)g(x)
is

Cris = aObr+s + albr+s—1 +t ar+s—lb1 + ar+sb0-

Since p divides ay, ..., a,-1 and b, ..., bs_;, p divides every term of ¢, except
for the term a,b,. However, since p | ¢, either p divides a, or p divides b;. But
this is impossible. u

Lemma 16.16. Let D be a UFD, and let p(x) and g(x) be in D[x]. Then the
content of p(x)g(x) is equal to the product of the contents of p(x) and g(x).

Proof. Let p(x) = cp1(x) and q(x) = dg;(x), where c and d are the contents of
p(x) and g(x), respectively. Then p;(x) and q;(x) are primitive. We can now
write p(x)q(x) = cdpi(x)qi(x). Since p;(x)q1(x) is primitive, the content of
p(x)g(x) must be cd. ]

Lemma 16.17. Let D be a UrD and F its field of fractions. Suppose that p(x) €
D[x] and p(x) = f(x)g(x), where f(x) and g(x) are in F[x]. Then p(x) =
fi(x)g1(x), where fi(x) and gi(x) are in D[x]. Further, deg f(x) = deg fi(x)
and deg g(x) = deg g1 (x).

Proof. Let a and b be nonzero elements of D such that af(x),bg(x) are in
D[x]. We can find ay, b, € D such that af(x) = a; fi(x) and bg(x) = bigi(x),
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where fi(x) and g;(x) are primitive polynomials in D[x]. Therefore, abp(x) =
(a1f1(x))(b1g1(x)). Since fi(x) and g;(x) are primitive polynomials, it must
be the case that ab | a;b, by Gauss’s Lemma. Thus there exists a ¢ € D such that
p(x) = cfi(x)gi(x). Clearly, deg f(x) = deg fi(x) and degg(x) = deggi(x).

|

The following corollaries are direct consequences of Lemma 16.17.

Corollary 16.18. Let D be a UFD and F its field of fractions. A primitive polyno-
mial p(x) in D[x] is irreducible in F[x] if and only if it is irreducible in D[x].

Corollary 16.19. Let D be a urD and F its field of fractions. If p(x) is a monic
polynomial in D[x] with p(x) = f(x)g(x) in F[x], then p(x) = fi(x)g(x),
where fi(x) and g(x) are in D[x]. Furthermore, deg f(x) = deg fi(x) and
deg g(x) = deg g1 (x).

Theorem 16.20. If D is a UFD, then D[x] is a UFD.

Proof. Let p(x) be a nonzero polynomial in D[x]. If p(x) is a constant polyno-
mial, then it must have a unique factorization since D is a UFD. Now suppose that
p(x) is a polynomial of positive degree in D[x]. Let F be the field of fractions
of D, and let p(x) = fi(x) f2(x)---fu(x) by a factorization of p(x), where each
fi(x) is irreducible. Choose a; € D such that g; f;(x) is in D[x]. There exist
by,...,b, € Dsuchthat a; f;(x) = b;g;(x), where g;(x) is a primitive polyno-
mial in D[x]. By Corollary 16.18, each g;(x) is irreducible in D[x]. Consequently,
we can write

ay--anp(x) = b-bugi(x)-gn(x).

Let b = by---b,. Since gi(x)---g,(x) is primitive, a;---a, divides b. Therefore,
p(x) =agi(x)---gu(x), where a € D. Since D is a UFD, we can factor a as uc;--c,
where u is a unit and each of the ¢;’s is irreducible in D.

We will now show the uniqueness of this factorization. Let

p(x) = ar--am fi(x)-fu(x) = br---brgi(x)--gs(x)

be two factorizations of p(x), where all of the factors are irreducible in D[x]. By
Corollary 16.18, each of the f;’s and g;’s is irreducible in F[x]. The a;’s and the
b;’s are units in F. Since F[x] is a PID, it is a UFD; therefore, n = s. Now rearrange
the g;(x)’s so that f;(x) and g;(x) are associates for i = 1,...,n. Then there
exist ¢1,..., ¢y and dy, ..., d, in D such that (¢;/d;) fi(x) = gi(x) or ¢; fi(x) =
d;gi(x). The polynomials f;(x) and g;(x) are primitive; hence, ¢; and d; are
associates in D. Thus, a;---a,, = uby--+-b, in D, where u is a unit in D. Since D is a
unique factorization domain, m = s. Finally, we can reorder the b;’s so that a; and
b; are associates for each i. This completes the uniqueness part of the proof. m
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The theorem that we have just proven has several obvious but important
corollaries.

Corollary 16.21. Let F be a field. Then F[x] is a UFD.
Corollary 16.22. Z[x]is a UFD.
Corollary 16.23. Let D be a urp. Then D[x;,...,x,] is a UFD.

Remark. It is important to notice that every Euclidean domain is a pID and every
PID is a UED. However, as demonstrated by our examples, the converse of each of
these statements fails. There are principal ideal domains that are not Euclidean
domains, and there are unique factorization domains that are not principal ideal
domains (Z[x]).

Historical Note

Karl Friedrich Gauss, born in Brunswick, Germany on April 30, 1777, is considered
to be one of the greatest mathematicians who ever lived. Gauss was truly a child
prodigy. At the age of three he was able to detect errors in the books of his father’s
business. Gauss entered college at the age of 15. Before the age of 20, Gauss was
able to construct a regular 17-sided polygon with a ruler and compass. This was the
first new construction of a regular n-sided polygon since the time of the ancient
Greeks. Gauss succeeded in showing that if N = 22" + 1 was prime, then it was
possible to construct a regular N-sided polygon.

Gauss obtained his Ph.D. in 1799 under the direction of Pfaff at the University
of Helmstedt. In his dissertation he gave the first complete proof of the Fundamen-
tal Theorem of Algebra, which states that every polynomial with real coefficients
can be factored into linear factors over the complex numbers. The acceptance of
complex numbers was brought about by Gauss, who was the first person to use
the notation of i for v/—1.

Gauss then turned his attention toward number theory; in 1801, he published
his famous book on number theory, Disquisitiones Arithmeticae. Throughout
his life Gauss was intrigued with this branch of mathematics. He once wrote,
“Mathematics is the queen of the sciences, and the theory of numbers is the queen
of mathematics”

In 1807, Gauss was appointed director of the Observatory at the University
of Gottingen, a position he held until his death. This position required him to
study applications of mathematics to the sciences. He succeeded in making contri-
butions to fields such as astronomy, mechanics, optics, geodesy, and magnetism.
Along with Wilhelm Weber, he coinvented the first practical electric telegraph
some years before a better version was invented by Samuel F. B. Morse.

Gauss was clearly the most prominent mathematician in the world in the early
nineteenth century. His status naturally made his discoveries subject to intense
scrutiny. Gauss’s cold and distant personality many times led him to ignore the
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work of his contemporaries, making him many enemies. He did not enjoy teaching
very much, and young mathematicians who sought him out for encouragement
were often rebuffed. Nevertheless, he had many outstanding students, including
Eisenstein, Riemann, Kummer, Dirichlet, and Dedekind. Gauss also offered a great
deal of encouragement to Sophie Germain (1776-1831), who overcame the many
obstacles facing women in her day to become a very prominent mathematician.
Gauss died at the age of 78 in Géttingen on February 23, 1855.

Exercises
1. Letz = a+b\/3ibein Z[\/3i]. If a + 3b* = 1, show that z must be a unit. Show that
the only units of Z[\/3 i] are1and —1.

2. The Gaussian integers, Z[i], are a UFD. Factor each of the following elements in Z[i]
into a product of irreducibles.

@@ s (c) 6+8i
(b) 1+3i @ 2

3. Let D be an integral domain.

(a) Prove that Fp is an abelian group under the operation of addition.

(b) Show that the operation of multiplication is well-defined in the field of fractions,
Fp.
(c) Verify the associative and commutative properties for multiplication in Fp.
4. Prove or disprove: Any subring of a field F containing 1 is an integral domain.
5. Let F be a field of characteristic zero. Prove that F contains a subfield isomorphic to Q.
6. Let F be a field.

(a) Prove that the field of fractions of F[x], denoted by F(x), is isomorphic to the set
all rational expressions p(x)/q(x), where q(x) is not the zero polynomial.

(b) Let p(x1,...,xn) and q(x1, ..., x,) be polynomials in F[xi,...,x,]. Show that

the set of all rational expressions p(x1,...,%x)/q(x1, ..., %x) is isomorphic to the
field of fractions of F[xi, . . ., x, |. We denote the field of fractions of F[xi, ..., x|
by F(x1,...,%n).

7. Let p be prime and denote the field of fractions of Z,[x] by Z,(x). Prove that Z,(x)
is an infinite field of characteristic p.

8. Prove that the field of fractions of the Gaussian integers, Z[i], is

Qi)={p+qi:p,qeQ}.

9. Afield F is called a prime field if it has no proper subfields. If E is a subfield of F and E
is a prime field, then E is a prime subfield of F.

(a) Prove that every field contains a unique prime subfield.

(b) If F is a field of characteristic o, prove that the prime subfield of F is isomorphic to
the field of rational numbers, Q.

(c) IfFis afield of characteristic p, prove that the prime subfield of F is isomorphic to
zZ,.
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10. LetZ[v2]={a+bv2:a,beZ}.

(a) Prove that Z[/2] is an integral domain.

(b) Find all of the units in Z[\/§ ]-

(c) Determine the field of fractions of Z[\/2].

(d) Prove that Z[+/2i] is a Euclidean domain under the Euclidean valuation v(a +
b\/2i) = a® + 207

11. Let D be a urD. An element d € D is a greatest common divisor of a and b in D if
d|aandd |bandd is divisible by any other element dividing both a and b.

(a) If Disapip and a and b are both nonzero elements of D, prove there exists a unique
greatest common divisor of a and b. We write ged(a, b) for the greatest common
divisor of a and b.

(b) Let Dbeapip and a and b be nonzero elements of D. Prove that there exist elements
sand t in D such that gcd(a, b) = as + bt.

12. Let D be an integral domain. Define a relation on D by a ~ b if a and b are associates
in D. Prove that ~ is an equivalence relation on D.

13. Let D be a Euclidean domain with Euclidean valuation v. If 4 is a unit in D, show that
v(u) = v(1).

14. Let D be a Euclidean domain with Euclidean valuation v. If a and b are associates in
D, prove that v(a) = v(b).

15. Show that Z[+/5 i] is not a unique factorization domain.

16. Prove or disprove: Every subdomain of a UFD is also a UFD.

17. Anideal of a commutative ring R is said to be finitely generated if there exist elements
ai, ..., an in R such that every element r € R can be written as a,71 + -+ + d, 1, for some
71,..., s in R. Prove that R satisfies the ascending chain condition if and only if every
ideal of R is finitely generated.

18. Let D be an integral domain with a descending chain of ideals I; > I, > ---. Show that
there exists an N such that I = Iy for all k > N. A ring satisfying this condition is said
to satisfy the descending chain condition, or bcc. Rings satisfying the pcc are called
Artinian rings, after Emil Artin.

19. Let R be a commutative ring with identity. We define a multiplicative subset of R to be
asubset Ssuchthatle Sandabe Sifa,beS.

(a) Define a relation ~ on R x S by (a,s) ~ (a’,s") if there exists an s € S such that
s(s’a —sa’) = 0. Show that ~ is an equivalence relation on R x S.

(b) Let a/s denote the equivalence class of (a,s) € R x S and let S™'R be the set of
all equivalence classes with respect to ~. Define the operations of addition and
multiplication on $™'R by

a b at+bs

— 4+ — =

s t st
ab _ab
st st

respectively. Prove that these operations are well-defined on S'R and that S™'R is a
ring with identity under these operations. The ring S™' R is called the ring of quotients
of R with respect to S.
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(c) Show that the map ¥ : R — S™'R defined by w(a) = a/1is a ring homomorphism.
(d) If R has no zero divisors and 0 ¢ S, show that v is one-to-one.

(e) Prove that P is a prime ideal of R if and only if S = R \ P is a multiplicative subset
of R.

(f) If Pis a prime ideal of Rand S = R \ P, show that the ring of quotients S 'R has a
unique maximal ideal. Any ring that has a unique maximal ideal is called a local ring.
References and Suggested Readings
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Lattices and Boolean Algebras

he axioms of a ring give structure to the operations of addition and multi-
plication on a set. However, we can construct algebraic structures, known

as lattices and Boolean algebras, that generalize other types of operations. For
example, the important operations on sets are inclusion, union, and intersection.
Lattices are generalizations of order relations on algebraic spaces, such as set inclu-
sion in set theory and inequality in the familiar number systems N, Z, @, and R.
Boolean algebras generalize the operations of intersection and union. Lattices and
Boolean algebras have found applications in logic, circuit theory, and probability.

17.1 Lattices

Partially Ordered Sets

We begin by the study of lattices and Boolean algebras by generalizing the idea of
inequality. Recall that a relation on a set X is a subset of X x X. A relation P on X
is called a partial order of X if it satisfies the following axioms.

1. The relation is reflexive: (a,a) € Pforall a € X.

2. The relation is antisymmetric: if (a,b) € Pand (b,a) € P, thena = b.

3. The relation is transitive: if (a,b) € P and (b, c) € P, then (a,c) € P.

We will usually write a < b to mean (a, b) € P unless some symbol is naturally
associated with a particular partial order, such as a < b with integers a and b,
or X ¢ Y with sets X and Y. A set X together with a partial order < is called a
partially ordered set, or poset.

Example 1. The set of integers (or rationals or reals) is a poset where a < b has
the usual meaning for two integers a and b in Z.

Example 2. Let X be any set. We will define the power set of X to be the set
of all subsets of X. We denote the power set of X by P(X). For example, let
X ={a, b, c}. Then P(X) is the set of all subsets of the set {a, b, c}:

@ {a} {0} {c}
{a,b} {a,c} {b,c} {a,b,c}.

On any power set of a set X, set inclusion, G, is a partial order. We can represent
the order on {4, b, ¢} schematically by a diagram such as the one in Figure 17.1.
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{a,b,c}
| T
{a,b} {a,c} {b,c}

Figure 17.1. Partial order on P({a, b, c})

Example 3. Let G be a group. The set of subgroups of G is a poset, where the
partial order is set inclusion.

Example 4. There can be more than one partial order on a particular set. We can
form a partial order on N by a < b if a | b. The relation is certainly reflexive since
alaforalla eN. If m | nand n | m, then m = n; hence, the relation is also
antisymmetric. The relation is transitive, because if m | n and n | p, then m | p.

Example 5. Let X = {1,2,3,4,6,8,12,24} be the set of divisors of 24 with the
partial order defined in Example 4. Figure 17.2 shows the partial order on X.

4

/2\
8 12
-
4 6
-
2 3

~

1

Figure 17.2. A partial order on the divisors of 24

Let Y be a subset of a poset X. An element u in X is an upper bound of Y if
a < u for every element a € Y. If u is an upper bound of Y such that u < v for
every other upper bound v of Y, then u is called a least upper bound or supremum
of Y. An element / in X is said to be a lower bound of Yif I <aforallae Y. If ]
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is a lower bound of Y such that k < [ for every other lower bound k of Y, then [
is called a greatest lower bound or infimum of Y.

Example 6. Let Y = {2, 3,4, 6} be contained in the set X of Example 5. Then Y
has upper bounds 12 and 24, with 12 as a least upper bound. The only lower bound
is 1; hence, it must be a greatest lower bound.

As it turns out, least upper bounds and greatest lower bounds are unique if
they exist.

Theorem 17.1. Let Y be a nonempty subset of a poset X. If Y has a least upper
bound, then Y has a unique least upper bound. If Y has a greatest lower bound,
then Y has a unique greatest lower bound.

Proof. Let u; and u; be least upper bounds for Y. By the definition of the least
upper bound, u; < u for all upper bounds u of Y. In particular, u; < u,. Similarly,
uy < uy. Therefore, u; = u, by antisymmetry. A similar argument show that the
greatest lower bound is unique. ]

On many posets it is possible to define binary operations by using the greatest
lower bound and the least upper bound of two elements. A lattice is a poset L
such that every pair of elements in L has a least upper bound and a greatest lower
bound. The least upper bound of a,b € L is called the join of a and b and is
denoted by a v b. The greatest lower bound of a, b € L is called the meet of a4 and
b and is denoted by a A b.

Example 7. Let X be a set. Then the power set of X, P(X), is a lattice. For two
sets A and B in P(X), the least upper bound of A and B is Au B. Certainly Au B
is an upper bound of A and B, since A€ Au Band B ¢ Au B. If C is some other
set containing both A and B, then C must contain A U B; hence, A U B is the least
upper bound of A and B. Similarly, the greatest lower bound of A and Bis An B.

Example 8. Let G be a group and suppose that X is the set of subgroups of G.
Then X is a poset ordered by set-theoretic inclusion, . The set of subgroups of
G is also a lattice. If H and K are subgroups of G, the greatest lower bound of H
and K is H n K. The set H u K may not be a subgroup of G. We leave it as an
exercise to show that the least upper bound of H and K is the subgroup generated
by HUK.

In set theory we have certain duality conditions. For example, by De Morgan’s
laws, any statement about sets that is true about (A U B)’" must also be true about
A’ n B’. We also have a duality principle for lattices.

Principle of Duality. Any statement that is true for all lattices remains true when
<isreplaced by > and v and A are interchanged throughout the statement.
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The following theorem tells us that a lattice is an algebraic structure with two
binary operations that satisfy certain axioms.

Theorem 17.2. If L is a lattice, then the binary operations v and A satisfy the
following properties for a, b, c € L.

1. Commutative laws: avb=bvaandanb=>bna.

N

. Associative laws: av (bvc¢)=(avb)vcandan(brc)=(anb)rc
3. Idempotent laws: ava=aandaAa = a.
4. Absorptionlaws: av (anb)=aandan (avb)=a.

Proof. By the Principle of Duality, we need only prove the first statement in each
part.

(1) By definition a v b is the least upper bound of {a, b}, and b v a is the least
upper bound of {b, a}; however, {a,b} = {b,a}.

(2) We will show that a v (b v ¢) and (a v b) v c are both least upper bounds
of {a,b,c}. Letd=avb. Thenc<dvc=(avb)vc Wealsoknow that

a<avb=d=<dvc=(avb)ve.

A similar argument demonstrates that b < (a v b) v c. Therefore, (a Vv b) v cis an
upper bound of {a, b, c}. We now need to show that (a v b) v ¢ is the least upper
bound of {a, b, c}. Let u be some other upper bound of {a, b, c}. Then a < u and
b <u;hence,d = av b < u. Since ¢ < u, it follows that (a vb)vec=dvc<u.
Therefore, (avb)vc must be the least upper bound of {4, b, c}. The argument that
shows a v (b v c) is the least upper bound of {a, b, c} is the same. Consequently,
av(bve)=(avb)ve.

(3) The join of a and a is the least upper bound of {a}; hence, a v a = a.

(4)Letd=anb. Thena < avd. On the other hand, d = a A b < a, and so
aVvd < a. Therefore, a Vv (a Ab) = a. ]

Given any arbitrary set L with operations v and A, satisfying the conditions
of the previous theorem, it is natural to ask whether or not this set comes from
some lattice. The following theorem says that this is always the case.

Theorem 17.3. Let L be a nonempty set with two binary operations v and A
satisfying the commutative, associative, idempotent, and absorption laws. We can
define a partial order on L by a < b if a v b = b. Furthermore, L is a lattice with
respect to < if for all a, b € L, we define the least upper bound and greatest lower
bound of a and b by a v b and a A b, respectively.

Proof. We first show that L is a poset under <. SinceaVv a = a,a < g and < is
reflexive. To show that < is antisymmetric,leta < band b < a. Thenavb=b
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and b v a = a. By the commutative law, b = a v b = b v a = a. Finally, we must
show that < is transitive. Leta < band b < c. Thenav b=band b v c = c. Thus,

avc=av(bvc)=(avb)vec=bvc=c,

orac<ec.

To show that L is a lattice, we must prove that avb and aAb are, respectively, the
least upper and greatest lower bounds of a and b. Since a = (avb)Aa = an(avb),
it follows that a < a v b. Similarly, b < a v b. Therefore, a v b is an upper bound
for a and b. Let u be any other upper bound of both a and b. Then a < u and
b=<u.Butavb<usince

(avb)vu=av(bvu)=avu=u.
The proof that a A b is the greatest lower bound of a and b is left as an exercise. m

17.2 Boolean Algebras

Let us investigate the example of the power set, P(X), of a set X more closely.
The power set is a lattice that is ordered by inclusion. By the definition of the
power set, the largest element in P(X) is X itself and the smallest element is &,
the empty set. For any set A in P(X), weknow that AnX = Aand Aug = A.
This suggests the following definition for lattices. An element I in a poset X is a
largest element if a < I for all a € X. An element O is a smallest element of X if
O<aforallaeX.
Let A be in P(X). Recall that the complement of A is

A'=X~A={x: xeXandx¢A}.

We know that AUA” = X and AnA’ = &. We can generalize this example for lattices.
A lattice L with a largest element I and a smallest element O is complemented if
for each a € X, there exists an a’ such thatav a’ =Iandana’ = O.

In a lattice L, the binary operations v and A satisfy commutative and associa-
tive laws; however, they need not satisfy the distributive law

an(bve)=(anb)v(anc)
however, in P(X) the distributive law is satisfied since

An(BuC)=(AnB)u(AnC)
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for A, B, C € P(X). We will say that a lattice L is distributive if the following
distributive law holds:

an(bvce)=(anb)v(anc)
foralla,b,ceL.
Theorem 17.4. A lattice L is distributive if and only if
av(brc)=(avb)a(ave)
foralla,b,ceL.
Proof. Let us assume that L is a distributive lattice.
av(bac)=[av(anc)]v(bnac)
avi(anc)v(bnc)]
avi(cana)v(cab)]
avica(avd)]
av[(avb)ac]

[(avb)na]v[(avb)rc]
=(avb)a(avec).

The converse follows directly from the Duality Principle. ]

A Boolean algebra is a lattice B with a greatest element I and a smallest element
O such that B is both distributive and complemented. The power set of X, P(X),
is our prototype for a Boolean algebra. As it turns out, it is also one of the most
important Boolean algebras. The following theorem allows us to characterize
Boolean algebras in terms of the binary relations v and A without mention of the
fact that a Boolean algebra is a poset.

Theorem 17.5. A set B is a Boolean algebra if and only if there exist binary opera-
tions v and A on B satisfying the following axioms.

1.avb=bvaandanb=bnrafora,beB.
2.av(bve)=(avb)vcandan(brc)=(anb)Acfora,b,ceB.

3. an(bvc)=(anb)v(anc)andav (bnac)=(avb)a(avc)fora,b,ceB.
4. There exist elements I and O suchthatav O =aandanl=a foralla € B.
5. For every a € B there existsan a’ € Bsuchthatav a’' =Tandana' = O.



270 LATTICES AND BOOLEAN ALGEBRAS

Proof. Let B be a set satisfying (1)-(5) in the theorem. One of the idempotent

laws is satisfied since
a=avO

=av(ana’)
=(ava)n(ava')
=(ava)nl
=ava.

Observe that
Ivb=(Ivb)AI=(IAD)v(bAI)=IvI=1
Consequently, the first of the two absorption laws holds, since

av(anb)=(anl)v(anb)
=an(Ivb)
=anl

=a.

The other idempotent and absorption laws are proven similarly. Since B also
satisfies (1)-(3), the conditions of Theorem 17.3 are met; therefore, B must be a
lattice. Condition (4) tells us that B is a distributive lattice.

Fora € B, Ova = a; hence, O < a and O is the smallest element in B. To show
that I is the largest element in B, we will first show that a v b = b is equivalent to
anb =a.SinceavI = aforall a € B, using the absorption laws we can determine
that

avIi=(an)vi=Iv(Ina)=1

or a < [ for all a in B. Finally, since we know that B is complemented by (5), B
must be a Boolean algebra.

Conversely, suppose that B is a Boolean algebra. Let I and O be the greatest
and least elements in B, respectively. If we define a v b and a A b as least upper
and greatest lower bounds of {a, b}, then B is a Boolean algebra by Theorem 17.3,
Theorem 17.4, and our hypothesis. ]

Many other identities hold in Boolean algebras. Some of these identities are
listed in the following theorem.
Theorem 17.6. Let B be a Boolean algebra. Then
1.avlI=IandanO =0 forallacB.
2. Ifavb=avcandanb=ancfora,b,ceB, thenb =c.
3. favb=Iandanb=0,thenb=ad'.
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4. (a’) =aforallaceB.
5. '=0and O’ =1
6. (avb) =a"Ab and (anb)' =a’vb' (De Morgan's Laws).

Proof. We will prove only (2). The rest of the identities are left as exercises. For
avb=avcandaAnb=anc, wehave

b=bv(bna)
=bv(anb)
=bv(anc)
=(bva)an(bve)
=(avb)a(bve)
=(ave)a(bve)
=(cva)a(cvb)
=cv(anb)
=cv(anc)
=cv(cAa)

=cC. u

Finite Boolean Algebras
A Boolean algebra is a finite Boolean algebra if it contains a finite number of
elements as a set. Finite Boolean algebras are particularly nice since we can
classify them up to isomorphism.
Let Band C be Boolean algebras. A bijective map ¢ : B - Cisan isomorphism

of Boolean algebras if

¢(avb)=¢(a)ve(b)

¢(anb)=¢(a)re(b)

forall @ and b in B.

We will show that any finite Boolean algebra is isomorphic to the Boolean
algebra obtained by taking the power set of some finite set X. We will need a
few lemmas and definitions before we prove this result. Let B be a finite Boolean
algebra. An elementa € Bisanatomof Bifa# OandaA b =aforall b € B.
Equivalently, a is an atom of B if there is no nonzero b € B distinct from a such
that O <b=<a.

Lemma 17.7. Let B be a finite Boolean algebra. If b is a nonzero element of B,
then there is an atom a in B such that a < b.
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Proof. If b is an atom, let a = b. Otherwise, choose an element b;, not equal to
O or b, such that b; < b. We are guaranteed that this is possible since b is not an
atom. If b, is an atom, then we are done. If not, choose b,, not equal to O or b,
such that b, < by. Again, if b, is an atom, let a = b,. Continuing this process, we
can obtain a chain

O<--<by<by,<b <bh.

Since B is a finite Boolean algebra, this chain must be finite. That is, for some k,
by is an atom. Let a = by. [ ]

Lemma 17.8. Let a and b be atoms in a finite Boolean algebra B such that a # b.
ThenaAnb=0.

Proof. Since a A b is the greatest lower bound of a and b, we know that a A b < a.
Hence, either a A b = a or a A b = O. However, if a A b = a, then either a < b or
a = O. In either case we have a contradiction because a and b are both atoms;
therefore, a A b = O. ]

Lemma 17.9. Let B be a Boolean algebra and a, b € B. The following statements
are equivalent.

1. a<b.
2. anb =0.
3.avb=1.

Proof. (1) = (2).If a < b, then a v b = b. Therefore,

anb ' =an(avb)
=an(a' Ab")
=(ana’)ab’
=OAb
=0.

(2)= (3).Ifanb' =0,thena’vb=(anb') =0"=1
(3) = (1).Ifa’ v b =I, then
a=an(a vb)
~(ana’)v(anb)
=0v(anb)

=aAnb.

Thus, a < b. [ ]
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Lemma 17.10. Let B be a Boolean algebra and b and ¢ be elements in B such that
b £ c. Then there exists an atom a € Bsuch thata < band a £ c.

Proof. By Lemma1y.9, bAac’ # O. Hence, there exists an atom a such thata < bac’.

Consequently, a < band a #£ c. ]
Lemma17.11. Letb € Band ay,..., a, be the atoms of B such that a; < b. Then
b=aVv--Vva,. Furthermore, if a,ay,...,a, are atoms of B such that a < b,
a;<b,andb=ava Vv--va,thena=a;forsomei=1,...,n.

Proof. Letb, = a; Vv -V a,. Since a; < b for each i, we know that b; < b. If we
can show that b < by, then the lemma is true by antisymmetry. Assume b £ b;.
Then there exists an atom a such that a < b and a £ b;. Since a is an atom and
a < b, we can deduce that a = a; for some a;. However, this is impossible since
a < by. Therefore, b < b;.

Now suppose that b = a; v --- v a,,. If a is an atom less than b,

a=anb=an(agv--vay)=(ana)Vv--Vv(anay).

But each term is O or a with aAa; occurring for only one a;. Hence, by Lemma 17.8,
a = a; for some i. ]

Theorem 17.12. Let B be a finite Boolean algebra. Then there exists a set X such
that B is isomorphic to P(X).

Proof. We will show that B is isomorphic to P(X), where X is the set of atoms
of B. Let a € B. By Lemma 17.11, we can write a uniquelyasa = a; v --- v a,, for
ap,...,a, € X. Consequently, we can define a map ¢ : B - P(X) by

¢(a) =d(arv--va,)={ay...,a,}.

Clearly, ¢ is onto.

Nowleta=a;v---va,and b =b; V-V b, be elements in B, where each
a; and each b; is an atom. If ¢(a) = ¢(b), then {ay,...,a,} = {by,..., b,y } and
a = b. Consequently, ¢ is injective.

The join of a and b is preserved by ¢ since

d(avb)=¢(ajv--va,vb V- Vvby,)
={an,....,an,b1,....by}
={an,...,a,} U{br,....bn}
=¢(av--va,)ud(byAn--Vvby)=¢(a)ud(b).

Similarly, ¢(a A b) = ¢(a) N ¢(b). ]
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We leave the proof of the following corollary as an exercise.

Corollary 17.13. The order of any finite Boolean algebra must be 2” for some
positive integer n.

17.3 The Algebra of Electrical Circuits

The usefulness of Boolean algebras has become increasingly apparent over the past
several decades with the development of the modern computer. The circuit design
of computer chips can be expressed in terms of Boolean algebras. In this section we
will develop the Boolean algebra of electrical circuits and switches; however, these
results can easily be generalized to the design of integrated computer circuitry.

A switch is a device, located at some point in an electrical circuit, that controls
the flow of current through the circuit. Each switch has two possible states: it can
be open, and not allow the passage of current through the circuit, or a it can be
closed, and allow the passage of current. These states are mutually exclusive. We
require that every switch be in one state or the other: a switch cannot be open and
closed at the same time. Also, if one switch is always in the same state as another,
we will denote both by the same letter; that is, two switches that are both labeled
with the same letter a will always be open at the same time and closed at the same
time.

Given two switches, we can construct two fundamental types of circuits. Two
switches a and b are in series if they make up a circuit of the type that is illustrated
in Figure 17.3. Current can pass between the terminals A and B in a series circuit
only if both of the switches a and b are closed. We will denote this combination
of switches by a A b. Two switches a and b are in parallel if they form a circuit of
the type that appears in Figure 17.4. In the case of a parallel circuit, current can
pass between A and B if either one of the switches is closed. We denote a parallel
combination of circuits a and b by a v b.

Figure173.a A b

We can build more complicated electrical circuits out of series and parallel
circuits by replacing any switch in the circuit with one of these two fundamental
types of circuits. Circuits constructed in this manner are called series-parallel
circuits.

We will consider two circuits equivalent if they act the same. That is, if we
set the switches in equivalent circuits exactly the same we will obtain the same
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Figure174.av b

result. For example, in a series circuit a A b is exactly the same as b A a. Notice
that this is exactly the commutative law for Boolean algebras. In fact, the set of
all series-parallel circuits forms a Boolean algebra under the operations of v and
A. We can use diagrams to verify the different axioms of a Boolean algebra. The
distributive law, a A (b Vv ¢) = (a A D) v (a A ¢), is illustrated in Figure 17.5. If a
is a switch, then a’ is the switch that is always open when a is closed and always
closed when a is open. A circuit that is always closed is I in our algebra; a circuit
that is always open is O. The laws for a A a’ = O and a v a’ = I are shown in
Figure 17.6.

b a—0>
c a—c¢

Figure175. an (bvc)=(anb)v(anc)

a
— a 7(1,7
al

Figure17.6.ana’=Oandava’' =1

Example 9. Every Boolean expression represents a switching circuit. For example,
given the expression (a v b) A (aVv b") A (a v b), we can construct the circuit in
Figure 17.7.

Theorem 17.14. The set of all circuits is a Boolean algebra.
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b b’ b
Figure17.7. (avb) A(avb')A(avb)

We leave as an exercise the proof of this theorem for the Boolean algebra
axioms not yet verified. We can now apply the techniques of Boolean algebras to
switching theory.

Example10. Givenacomplex circuit, we can now apply the techniques of Boolean
algebra to reduce it to a simpler one. Consider the circuit in Figure 17.7. Since

(avb)a(avb)an(avb)=(avb)ar(avb)a(avd)
=(avb)a(avb)
=av(bvd')

we can replace the more complicated circuit with a circuit containing the single
switch a and achieve the same function.

Historical Note

George Boole (1815-1864) was the first person to study lattices. In 1847, he published The
Investigation of the Laws of Thought, a book in which he used lattices to formalize logic
and the calculus of propositions. Boole believed that mathematics was the study of form
rather than of content; that is, he was not so much concerned with what he was calculating
as with how he was calculating it. Boole’s work was carried on by his friend Augustus De
Morgan (1806-1871). De Morgan observed that the principle of duality often held in set
theory, as is illustrated by De Morgan’s laws for set theory. He believed, as did Boole, that
mathematics was the study of symbols and abstract operations.

Set theory and logic were further advanced by such mathematicians as Alfred North
Whitehead (1861-1947), Bertrand Russell (1872-1970), and David Hilbert (1862-1943). In
Principia Mathematica, Whitehead and Russell attempted to show the connection between
mathematics and logic by the deduction of the natural number system from the rules of
formal logic. If the natural numbers could be determined from logic itself, then so could
much of the rest of existing mathematics. Hilbert attempted to build up mathematics
by using symbolic logic in a way that would prove the consistency of mathematics. His
approach was dealt a mortal blow by Kurt Godel (1906-1978), who proved that there will
always be “undecidable” problems in any sufficiently rich axiomatic system; that is, that
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in any mathematical system of any consequence, there will always be statements that can
never be proven either true or false.

As often occurs, this basic research in pure mathematics later became indispensable
in a wide variety of applications. Boolean algebras and logic have become essential in the
design of the large-scale integrated circuitry found on today’s computer chips. Sociologists
have used lattices and Boolean algebras to model social hierarchies; biologists have used
them to describe biosystems.

Exercises

1. Draw the lattice diagram for the power set of X = {a, b, ¢, d} with the set inclusion
relation, C.

2. Draw the diagram for the set of positive integers that are divisors of 30. Is this poset a
Boolean algebra?

3. Draw a diagram of the lattice of subgroups of Z5.
4. Let B be the set of positive integers that are divisors of 36. Define an order on B by
a < bifa|b. Prove that B is a Boolean algebra. Find a set X such that B is isomorphic
to P(X).
5. Prove or disprove: Z is a poset under the relation a < bifa | b.
6. Draw the switching circuit for each of the following Boolean expressions.
(@) (avbva')na (b) (avb) A(avb)
(c) av(anb) (d) (cvavb)acd a(avd)
7. Draw a circuit that will be closed exactly when only one of three switches 4, b, and ¢
are closed.

8. Prove or disprove that the two circuits shown are equivalent.

—a—b— ¢ — a—5b
a ¢ a — ¢

9. Let X be a finite set containing 7 elements. Prove that P(X) = 2". Conclude that the
order of any finite Boolean algebra must be 2" for some n € N.

10. For each of the following circuits, write a Boolean expression. If the circuit can be
replaced by one with fewer switches, give the Boolean expression and draw a diagram

for the new circuit.
a— b
B a, { —’>
b
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R
L.,

a—b—c¢
ad— b —c¢
a — b (¢

11. Prove or disprove: The set of all nonzero integers is a lattice, where a < b is defined by
alb.
12. Prove that a A b is the greatest lower bound of a and b in Theorem 17.3.

13. Let L be a nonempty set with two binary operations v and A satisfying the commutative,
associative, idempotent, and absorption laws. We can define a partial order on L, as in
Theorem 17.3, by a < b if a v b = b. Prove that the greatest lower bound of a and b is
anb.

14. Let G be a group and X be the set of subgroups of G ordered by set-theoretic inclusion.
If H and K are subgroups of G, show that the least upper bound of H and K is the
subgroup generated by H U K.

15. Let R be a ring and suppose that X is the set of ideals of R. Show that X is a poset
ordered by set-theoretic inclusion, €. Define the meet of two ideals I and Jin X by InJ
and the join of I and J by I + J. Prove that the set of ideals of R is a lattice under these
operations.

16. Let B be a Boolean algebra. Prove each of the following identities.
(@) avIi=IandanO=0forallaeB.
(b) Ifavb=TIandaAb=0,thenb=a'.
(c) (a') =aforallacB.
(d I'=0and O’ =1.
(e) (avb) =a' Ab"and (anb) =a’vb' (DeMorgan’s laws).
17. By drawing the appropriate diagrams, complete the proof of Theorem 17.14 to show
that the switching functions form a Boolean algebra.

18. Let B be a Boolean algebra. Define binary operations + and - on B by

a+b=(anb)v(a rb)

a-b=anb.

Prove that B is a commutative ring under these operations satisfying a* = a for all a € B.
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x y|x xvy =xnay
0 0|1 0 0
0 1 1 1 0
1 0] 0 1 0
1 1 0 1 1

Table 17.1. Boolean polynomials

19. Let X be a poset such that for every a and b in X, either a < b or b < a. Then X is said

to be a totally ordered set.
(a) Isa|batotal order on N?
(b) Prove that N, Z, Q, and R are totally ordered sets under the usual ordering <.

20. Let X and Y be posets. A map ¢ : X — Y is order-preserving if a < b implies that
¢(a) < ¢(b). Let L and M be lattices. A map y : L — M is a lattice homomorphism if
y(avb)=y(a)Vvy(b)andy(ab)=1y(a)Ay(b). Show that every lattice homo-
morphism is order-preserving, but that it is not the case that every order-preserving
homomorphism is a lattice homomorphism.

21. Let B be a Boolean algebra. Prove that a = b ifand only if (a A b") v (a’ A b) = O for
a,beB.

22. Let B be a Boolean algebra. Prove that a = 0 ifand only if (a A b") v (a’ A b) = b for
all b € B.

23. Let L and M be lattices. Define an order relation on L x M by (a,b) < (¢,d) ifa <c¢
and b < d. Show that L x M is a lattice under this partial order.

Programming Exercises

A Boolean or switching function on 7 variables isa map f : {O,I}" — {0,I}. A Boolean
polynomial is a special type of Boolean function: it is any type of Boolean expression
formed from a finite combination of variables x, . .., x, together with O and I, using the
operations Vv, A, and ’. The values of the functions are defined in Table 17.1. Write a program
to evaluate Boolean polynomials.
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Vector Spaces

n a physical system a quantity can often be described with a single number.
For example, we need to know only a single number to describe temperature,
mass, or volume. However, for some quantities, such as location, we need several
numbers. To give the location of a point in space, we need x, y, and z coordinates.
Temperature distribution over a solid object requires four numbers: three to
identify each point within the object and a fourth to describe the temperature
at that point. Often n-tuples of numbers, or vectors, also have certain algebraic
properties, such as addition or scalar multiplication.
In this chapter we will examine mathematical structures called vector spaces.
As with groups and rings, it is desirable to give a simple list of axioms that must
be satisfied to make a set of vectors a structure worth studying.

18.1 Definitions and Examples

A vector space V over a field F is an abelian group with a scalar product « - v or
av defined for all & € F and all v € V satisfying the following axioms.

a(pv) = (aB)v;

o (a+pB)v=av+pPy

o a(u+v)=oau+av;
e lv=v;
where o, f € Fand u,ve V.

The elements of V are called vectors; the elements of F are called scalars. It is
important to notice that in most cases two vectors cannot be multiplied. In general,
it is only possible to multiply a vector with a scalar. To differentiate between the
scalar zero and the vector zero, we will write them as 0 and 0, respectively.

Let us examine several examples of vector spaces. Some of them will be quite
familiar; others will seem less so.

Example 1. The n-tuples of real numbers, denoted by R", form a vector space
over R. Given vectors u = (uy,...,u,)and v = (vy,...,v,) in R” and «a in R, we
can define vector addition by

u+v=_(un,...,up)+ (V.. vn) = (U1 +vi,.. .ty +vy)
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and scalar multiplication by
au=a(uy,...,u,) = (auy,...,quy).

Example 2. If F is a field, then F[x] is a vector space over F. The vectors in F[x]
are simply polynomials. Vector addition is just polynomial addition. If « € F and
p(x) € F[x], then scalar multiplication is defined by ap(x).

Example 3. The set of all continuous real-valued functions on a closed interval
[a,b] is a vector space over R. If f(x) and g(x) are continuous on [4, b], then
(f + g)(x) is defined to be f(x) + g(x). Scalar multiplication is defined by
(af)(x) = af(x) for a € R. For example, if f(x) = sinx and g(x) = x?, then
(2f +59)(x) = 2sinx + 5x2.

Example 4. Let V = Q(v/2) = {a +b\/2: a,b € Q}. Then V is a vector space
over Q. Ifu=a+byv2andv = ¢ + d\/2, then

u+v=_(a+c)+(b+d)2

is again in V. Also, for a € Q, av is in V. We will leave it as an exercise to verify
that all of the vector space axioms hold for V.

Proposition 18.1. Let V be a vector space over F. Then each of the following
statements is true.

1. Ov=0forallveV.

2. a0 =0foralla e F.

3. Ifav =0, then either a =0 or v = 0.

4. (-1)v=-vforallveV.

5. —(av) = (—a)v=a(-v) foralla e Fand allv e V.

Proof. To prove (1), observe that
0v=(0+0)v=0v+0v;

consequently, 0 + Ov = Ov + Ov. Since V is an abelian group, 0 = Ov.
The proof of (2) is almost identical to the proof of (1). For (3), we are done if
a = 0. Suppose that a # 0. Multiplying both sides of av = 0 by 1/a, we have v = 0.
To show (4), observe that

v+(-v=w+(-1)v=>1-1)v=0v=0,

and so —v = (—1)v. We will leave the proof of (5) as an exercise. ]
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18.2 Subspaces

Just as groups have subgroups and rings have subrings, vector spaces also have
substructures. Let V be a vector space over a field F, and W a subset of V. Then
W is a subspace of V if it is closed under vector addition and scalar multiplication;
thatis, if u,v € W and « € F, it will always be the case that u + v and av are also
in W.

Example 5. Let W be the subspace of R® defined by W = {(x1, 2x; + x2, %1 — x3)
x1, X3 € R}. We claim that W is a subspace of R®. Since
o (x1, 21 + X2, x1 — x2) = (axy, a(2x1 + x2), a(x; — x2))
= (axp, 2(ax;) + ax;y, ax; — axy),
W is closed under scalar multiplication. To show that W is closed under vector

addition, let u = (x1,2x1 + x2, %1 — x2) and v = (31,21 + ¥2, y1 — ¥2) be vectors
in W. Then

u+v=0a+y2(x1+ )+ (x2+92), (x1+ 1) = (x2+ ¥2)).

Example 6. Let W be the subset of polynomials of F[x] with no odd-power terms.
If p(x) and g(x) have no odd-power terms, then neither will p(x) + g(x). Also,
ap(x) e Wiorae Fand p(x) e W.

Let V be any vector field over a field F and suppose that v;,v,,...,v, are
vectors in V and a3, az, . .., &, are scalars in F. Any vector w in V of the form

n
w = ZOC,‘V,‘ =MV + vyt 0V,
i=1

is called a linear combination of the vectors vy, v5, ..., v,. The spanning set of
vectors vy, V2, . . ., vy, is the set of vectors obtained from all possible linear combi-
nations of vy, v, ..., v,. If W is the spanning set of v1, v,, ..., vy, then we often

say that W is spanned by v1,va, ..., v,.

Proposition 18.2. Let S = {v,v,,...,v,} be vectors in a vector space V. Then
the span of S is a subspace of V.

Proof. Let u and v be in S. We can write both of these vectors as linear combina-
tions of the v;’s:
U=V + avy + -+ 0¥y
V= /311/1 +ﬁ21/2 + .- +ﬂnv,,.
Then
u+v=_(ay+pfi)vi+ (az+f2)va+-+(an+fn)vn
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is a linear combination of the v;’s. For « € F,
au = (aoy)vy + (o) vy + -+ (e, ) vy
is in the span of S. ]

18.3 Linear Independence

Let S = {v1,v2,..., v, } be a set of vectors in a vector space V. If there exist scalars
a1, & ... &, € Fsuch that not all of the «;’s are zero and

v+ vy + -+ ayv, =0,

then S is said to be linearly dependent. If the set S is not linearly dependent, then
it is said to be linearly independent. More specifically, S is a linearly independent
set if

Qv+ vy + e+ AV, =0

implies that
=0=-=a,=0

for any set of scalars {ay, a2 ... a,}.

Proposition 18.3. Let {v;,v,,...,v,} be a set of linearly independent vectors in
a vector space. Suppose that

V=gV + ooVy + o+ vy = Pivi+ Pava + o+ PuVa.

Then oy = 1,02 = B2,..., 4y = P

Proof. 1f
V=gV + oy + o+ gV = Bivi+ Pava + o+ BuVa,
then
(1= Bi)vi+ (az = B2)va+-+ (ay — Bu)v, =0.
Since vy, ..., v, are linearly independent, o; — f; =0fori =1,...,n. [ ]

The definition of linear dependence makes more sense if we consider the
following proposition.

Proposition 18.4. A set {v;,v,,...,v,} of vectors in a vector space V is linearly
dependent if and only if one of the v;s is a linear combination of the rest.
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Proof. Suppose that {v,v,,...,v,} is a set of linearly dependent vectors. Then
there exist scalars «q, . .., &, such that

vy + vy + -+ ayv, =0,

with at least one of the «;’s not equal to zero. Suppose that ay # 0. Then

_ o, ! Xk+1 &n
Vik=——Vi— = Vi1~ Vksa1 7T Vae
(423 (423 (423 Xk

Conversely, suppose that

Vi = Pivi+ o+ BroiVior + BraViar + o+ BV,

Then
Bivi+ -+ ProiVi—1 — Vi + PraVier + -+ Buavy = 0. u

The following proposition is a consequence of the fact that any system of
homogeneous linear equations with more unknowns than equations will have
a nontrivial solution. We leave the details of the proof for the end-of-chapter
exercises.

Proposition 18.5. Suppose that a vector space V is spanned by # vectors. If m > n,
then any set of m vectors in V must be linearly dependent.

A set {e), es,...,e,} of vectors in a vector space V is called a basis for V if
{e1, €2,...,e,} is alinearly independent set that spans V.

Example 7. The vectors e; = (1,0,0), e; = (0,1,0), and e3 = (0, 0,1) form a basis
for R3. The set certainly spans R?, since any arbitrary vector (x;, x2, x3) in R* can
be written as x;e; + x,e, + x3e3. Also, none of the vectors e, e, e3 can be written
as a linear combination of the other two; hence, they are linearly independent. The
vectors ey, e,, e3 are not the only basis of R*: the set {(3,2,1),(3,2,0), (1,1,1)} is
also a basis for R>.

Example 8. Let Q(v/2) = {a+b\/2:a,b e Q}. Thesets {1,/2 } and {1+/2,1-
V/2} are both bases of Q(1/2).

From the last two examples it should be clear that a given vector space has
several bases. In fact, there are an infinite number of bases for both of these
examples. In general, there is no unique basis for a vector space. However, every
basis of R consists of exactly three vectors, and every basis of Q(1/2 ) consists of
exactly two vectors. This is a consequence of the next proposition.

Proposition 18.6. Let {e,ez,...,en} and {fi, f2, ..., fu} be two bases for a vec-
tor space V. Then m = n.
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Proof. Since {ey, ez, ...,en} is abasis, it is a linearly independent set. By Propo-
sition 18.5, n < m. Similarly, { f1, f2, ..., fu } is a linearly independent set, and the
last proposition implies that m < n. Consequently, m = n. [ ]

If{e1, e, ..., e, } isabasis foravector space V, then we say that the dimension
of V is n and we write dim V' = n. We will leave the proof of the following theorem
as an exercise.

Theorem 18.7. Let V be a vector space of dimension #.

1. IfS = {v1,...,v,} is a set of linearly independent vectors for V, then S is a basis
for V.

2. IfS={vi,...,v,} spans V, then S is a basis for V.

3. If S ={v1,..., vk} is a set of linearly independent vectors for V with k < n, then
there exist vectors Vi1, . . ., Vy such that

Vs e s Vi Vitlo -+ >V }

is a basis for V.

Exercises

1. If F is a field, show that F[x] is a vector space over F, where the vectors in F[x] are
polynomials. Vector addition is polynomial addition, and scalar multiplication is defined
by ap(x) for a € F.

2. Prove that Q(+/2) is a vector space.

3. Let @(\/5, V3 ) be the field generated by elements of the form a + b\/2 + ¢+/3, where
a, b, c are in Q. Prove that (I;D(\/i, \/5) is a vector space of dimension 4 over Q. Find a
basis for Q(v/2,/3).

4. Prove that the complex numbers are a vector space of dimension 2 over R.

5. Prove that the set P, of all polynomials of degree less than n form a subspace of the
vector space F[x]. Find a basis for P, and compute the dimension of P,.

6. Let F be a field and denote the set of n-tuples of F by F”. Given vectors u = (u1, ..., Un)
andv = (v1,...,v,) in F" and « in F, define vector addition by

u+v=(us...,tun)+ ey Vn) = (U1 + V1o Uy + V)
and scalar multiplication by
au=a(uy,...,us) = (aur,...,auy,).

Prove that F" is a vector space of dimension n under these operations.
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7. Which of the following sets are subspaces of R*? If the set is indeed a subspace, find a
basis for the subspace and compute its dimension.

(@) {(x1,x2,x3):3x1—2x,+x3 =0}
(b) {(x1,x2,x3) :3x1 + 4x3 = 0,2x — x2 + x3 = 0}
() {(x1,x2,x3) 1 %1 — 2x2 + 2x3 = 2}
(d) {(x1,x2,%3) : 3%, — 2x3 = 0}
8. Show that the set of all possible solutions (x, y,z) € R® of the equations

Ax+By+Cz=0
Dx+Ey+Cz=0

forms a subspace of R*.
9. Let W be the subset of continuous functions on [0, 1] such that f(0) = 0. Prove that
W is a subspace of C[0, 1].

10. Let V be a vector space over F. Prove that —(av) = (—a)v = a(-v) forall « € F and
allveV.

11. Let V be a vector space of dimension n. Prove each of the following statements.
(@) IfS = {w,...,v.} is aset of linearly independent vectors for V, then S is a basis

for V.

(b) IfS = {v1,...,v,} spans V, then S is a basis for V.

(c) If S = {w1,..., vk} is a set of linearly independent vectors for V with k < n, then
there exist vectors v, ..., v, such that

(Vs s Vi Vikts oo Vi )

is a basis for V.
12. Prove that any set of vectors containing 0 is linearly dependent.
13. Let V be a vector space. Show that {0} is a subspace of V of dimension zero.

14. If a vector space V is spanned by n vectors, show that any set of m vectors in V' must
be linearly dependent for m > n.

15. Linear Transformations. Let V and W be vector spaces over a field F, of dimensions
m and n, respectively. If T : V — W is a map satisfying

T(u+v)=T(u)+T(v)
T(av) =aT(v)

forall « € Fand all u,v € V, then T is called a linear transformation from V into W.

(a) Prove that the kernel of T, ker(T) = {v € V : T(v) = 0}, is a subspace of V. The
kernel of T is sometimes called the null space of T.

(b) Prove that the range or range space of T,
R(V)={weW:T(v) =wforsomeveV},

is a subspace of W.
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(c) Show that T: V — W is injective if and only if ker(T) = {0}.

(d) Let {vi,..., vk} be abasis for the null space of T. We can extend this basis to be
abasis {Vi,..., Vi, Vks1> -« -» Vm } Of V. Why? Prove that {T (vk11),..., T(vm)} isa
basis for the range of T. Conclude that the range of T has dimension m — k.

(e) Letdim V = dim W. Show that a linear transformation T : V — W is injective if
and only if it is surjective.

16. Let V and W be finite dimensional vector spaces of dimension 7 over a field F. Suppose
that T : V — W is a vector space isomorphism. If {1, ..., v, } is a basis of V, show that
{T(n1),..., T(va)} is a basis of W. Conclude that any vector space over a field F of
dimension # is isomorphic to F".

17. Direct Sums. Let U and V be subspaces of a vector space W. The sum of U and V,
denoted U + V, is defined to be the set of all vectors of the form u + v, where u € U and
veV.

(a) Provethat U + V and U n V are subspaces of W.

(b) fU+V =Wand UnV =0, then W is said to be the direct sum of U and V and
we write W = U @ V. Show that every element w € W can be written uniquely as
w=u+v,whereue UandveV.

(c) Let U be a subspace of dimension k of a vector space W of dimension n. Prove that
there exists a subspace V of dimension #n — k such that W = U @ V. Is the subspace
V unique?

(d) If U and V are arbitrary subspaces of a vector space W, show that
dim(U+V)=dimU +dimV —dim(U n V).

18. Dual Spaces. Let V and W be finite dimensional vector spaces over a field F.

(a) Show that the set of all linear transformations from V into W, denoted Hom(V, W),
is a vector space over F, where we define vector addition as follows:

(S+T)(v)=Sk)+T(v)
(aS)(v) = aS(v),

where S, T e Hom(V, W), € F,andve V.

(b) Let V be an F-vector space. Define the dual space of V to be V* = Hom(V, F).
Elements in the dual space of V are called linear functionals. Let vy, ..., v, be an
ordered basis for V. If v = a1y, +---+a, v, is any vector in V, define a linear functional
¢i: V > Fby ¢i(v) = a;. Show that the ¢;’s form a basis for V*. This basis is called
the dual basis of vi, . . ., v, (or simply the dual basis if the context makes the meaning
clear).

(c) Consider the basis {(3,1), (2, -2)} for R?. What is the dual basis for (R*)*?

(d) Let V be a vector space of dimension 7 over a field F and let V** be the dual space
V*. Show that each element v € V gives rise to an element A, in V** and that the
map v — A, is an isomorphism of V with V**.
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19
Fields

7 t is natural to ask whether or not some field F is contained in a larger field. We
think of the rational numbers, which reside inside the real numbers, while
in turn, the real numbers live inside the complex numbers. We can also study the
fields between @ and R and inquire as to the nature of these fields.

More specifically if we are given a field F and a polynomial p(x) € F[x], we
can ask whether or not we can find a field E containing F such that p(x) factors
into linear factors over E[x]. For example, if we consider the polynomial

p(x)=x*-5x*+6

in Q[x], then p(x) factors as (x* —2)(x? - 3). However, both of these factors are
irreducible in Q[x]. If we wish to find a zero of p(x), we must go to a larger field.
Certainly the field of real numbers will work, since

p(x) = (x = V2)(x + V2)(x = V3) (x + V3).
It is possible to find a smaller field in which p(x) has a zero, namely
Q(V2)={a+bV2:a,becQ}.

We wish to be able to compute and study such fields for arbitrary polynomials
over a field F.

19.1 Extension Fields

A field E is an extension field of a field F if F is a subfield of E. The field F is called
the base field. We write F c E.

Example 1. For example, let
F=Q(V2)={a+bV2:a,beQ}

and let E = Q(v/2 + /3) be the smallest field containing both @ and /2 + /3.
Both E and F are extension fields of the rational numbers. We claim that E is an
extension field of F. To see this, we need only show that \/2isin E. Since /2 +/3
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isin E,1/(v/2 +/3) = /3 — v/2 must also be in E. Taking linear combinations
of /2 +v/3 and /3 - /2, we find that /2 and \/3 must both be in E.

Example 2. Let p(x) = x> + x + 1 € Z,[x]. Since neither o nor 1 is a root of
this polynomial, we know that p(x) is irreducible over Z,. We will construct a
field extension of Z, containing an element « such that p(«) = 0. By Theorem
15.13, the ideal {p(x)) generated by p(x) is maximal; hence, Z,[x]/(p(x)) is a
field. Let f(x) + (p(x)) be an arbitrary element of Z,[x]/{p(x)). By the division
algorithm,

f(x) = (x2 +x+1)gq(x) +r(x),

where the degree of r(x) is less than the degree of x* + x + 1. Therefore,
Fx)+ (x* +x+1) = r(x) + (x* +x +1).

The only possibilities for r(x) are then 0, 1, x, and 1 + x. Consequently, E =
Z,[x]/{x* + x +1) is a field with four elements and must be a field extension of
Z,, containing a zero « of p(x). The field Z, () consists of elements

0+0a=0
1+0a=1
O+la=«a

I+la=1+a.
Notice that a® + « +1 = 0; hence, if we compute (1+ «)?,
(I+a)1+a)=1+a+a+(a)’=a
Other calculations are accomplished in a similar manner. We summarize these

computations in the following tables, which tell us how to add and multiply
elements in E.

+ ‘ 0 1 o 1+«
0 0 1 o 1+«
1 1 0 1+« o
o o 1+« 1
l+a |1+« o 1 0
0 1 lo4 1+a

0 0 0 0 0

1 0 1 lo4 1+«

o 0 o 1+« 1

l+aa |0 1+« 1 o
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The following theorem, due to Kronecker, is so important and so basic to our
understanding of fields that it is often known as the Fundamental Theorem of
Field Theory.

Theorem 19.1. Let F be a field and let p(x) be a nonconstant polynomial in
F[x]. Then there exists an extension field E of F and an element « € E such that

p(a) =0.

Proof. To prove this theorem, we will employ the method that we used to construct
Example 2. Clearly, we can assume that p(x) is an irreducible polynomial. We
wish to find an extension field E of F containing an element o such that p(«) = 0.
The ideal (p(x)) generated by p(x) is a maximal ideal in F[x] by Theorem 15.13;
hence, F[x]/{p(x)) is a field. We claim that E = F[x]/(p(x)) is the desired field.

We first show that E is a field extension of F. We can define a homomorphism
of commutative rings by the map v : F — F[x]/{ p(x) ), where y(a) =
a+(p(x)) for a € F. It is easy to check that y is indeed a ring homomorphism.
Observe that

y(a) +y(b) = (a+(p(x))) + (b +(p(x))) = (a+b) +(p(x)) = y(a+b)

and

y(a)y(b) = (a+(p(x)))(b+(p(x))) = ab+ (p(x)) = y(ab).

To prove that y is one-to-one, assume that

a+(p(x))=w(a) =y(b) = b+ (p(x)).

Then a — b is a multiple of p(x), since it lives in the ideal (p(x)). Since p(x) is
a nonconstant polynomial, the only possibility is that a — b = 0. Consequently,
a = b and v is injective. Since y is one-to-one, we can identify F with the subfield
{a+(p(x)):acF}of Eandview E as an extension field of F.

It remains for us to prove that p(x) hasazero a € F. Set a = x + (p(x)). Then
aisin E. If p(x) = ag + a1x + - + a,x", then

p(a) = ao+ai(x + (p(x))) + -+ an(x + (p(x)))"
= ag + (ax +(p(x))) +-+ (anx" + (p(x)))
=ag+ax+-+a,x" + (p(x))
=0+ (p(x)).

Therefore, we have found an element « € E = F[x]/{p(x)) such that « is a zero
of p(x). ]
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Example 3. Let p(x) = x° + x* + 1 € Z,[x]. Then p(x) has irreducible factors
x*+x+1and x> + x + 1. For a field extension E of Z, such that p(x) has a root in
E, we can let E be either Z,[x]/{x* + x +1) or Z,[x]/{x* + x +1). We will leave
it as an exercise to show that Z,[x]/(x> + x + 1) is a field with 2* = 8 elements.

Algebraic Elements

An element « in an extension field E over F is algebraic over F if f(«) = 0 for
some nonzero polynomial f(x) € F[x]. An element in E that is not algebraic
over F is transcendental over F. An extension field E of a field F is an algebraic
extension of F if every element in E is algebraic over F. If E is a field extension
of Fand «y, ..., a, are contained in E, we denote the smallest field containing F
and ay,...,a, by F(ay,...,a,). If E = F(«) for some « € E, then E is a simple
extension of F.

Example 4. Both \/2 and i are algebraic over Q since they are zeros of the poly-
nomials x? — 2 and x? + 1, respectively. Clearly 7 and e are algebraic over the
real numbers; however, it is a nontrivial fact that they are transcendental over
Q. Numbers in R that are algebraic over Q are in fact quite rare. Almost all real
numbers are transcendental over Q. (In many cases we do not know whether or
not a particular number is transcendental; for example, it is not known whether
7 + e is transcendental or algebraic.)

A complex number that is algebraic over @ is an algebraic number. A tran-
scendental number is an element of C that is transcendental over Q.

Example 5. We will show that \/2 + /3 is algebraic over Q. If « = \/2 + 1/3, then
o? :2+\/§. Hence, a? -2 = \/gand (oc2—2)2 =3, Since a* —4a® +1=0, it
must be true that « is a zero of the polynomial x* — 4x* + 1 € Q[x].

It is very easy to give an example of an extension field E over a field F, where E
contains an element transcendental over F. The following theorem characterizes
transcendental extensions.

Theorem19.2. Let E be an extension field of F and « € E. Then « is transcendental
over F if and only if F(«) is isomorphic to F(x), the field of fractions of F[x].

Proof. Let ¢, : F[x] — E be the evaluation homomorphism for a. Then «a is
transcendental over F if and only if ¢, (p(x)) = p(a) # 0 for all nonconstant
polynomials p(x) € F[x]. This is true if and only if ker ¢, = {0}; that is, it is
true exactly when ¢, is one-to-one. Hence, E must contain a copy of F[x]. The
smallest field containing F[x] is the field of fractions F(x). By Theorem 16.4, E
must contain a copy of this field. ]

'If we choose a number in R, then there is a probability of 1 that the number will be transcendental
over Q.
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We have a more interesting situation in the case of algebraic extensions.

Theorem 19.3. Let E be an extension field of a field F and « € E with « algebraic
over F. Then there is a unique irreducible monic polynomial p(x) € F[x] of
smallest degree such that p(er) = 0. If f(x) is another monic polynomial in F[x]
such that f(«) = 0, then p(x) divides f(x).

Proof. Let ¢ : F[x] — E be the evaluation homomorphism. The kernel of ¢, is
a principal ideal generated by some p(x) € F[x] with deg p(x) > 1. We know that
such a polynomial exists, since F[x] is a principal ideal domain and « is algebraic.
The ideal (p(x)) consists exactly of those elements of F[x] having « as a zero.
If f(a) = 0 and f(x) is not the zero polynomial, then f(x) € (p(x)) and p(x)
divides f(x). So p(x) is a polynomial of minimal degree having « as a zero. Any
other polynomial of the same degree having « as a zero must have the form Sp(x)
for some f € F.

Suppose now that p(x) = r(x)s(x) is a factorization of p into polynomials
of lower degree. Since p(a) = 0, r(a)s(a) = 0; consequently, either r(a) = 0 or
s(a) = 0, which contradicts the fact that p is of minimal degree. Therefore, p(x)
must be irreducible. u

Let E be an extension field of F and « € E be algebraic over F. The unique
monic polynomial p(x) of the last theorem is called the minimal polynomial for
a over F. The degree of p(x) is the degree of « over F.

Example 6. Let f(x) = x*> — 2and g(x) = x* — 4x? + 1. These polynomials are
the minimal polynomials of v/2 and v/2 + /3, respectively.

Proposition 19.4. Let E be a field extension of F and « € E be algebraic over F.
Then F(a) = F[x]/{p(x)), where p(x) is the minimal polynomial of & over F.

Proof. Let ¢, : F[x] — E be the evaluation homomorphism. The kernel of this
map is the minimal polynomial p(x) of a. By the First Isomorphism Theorem
for rings, the image of ¢, in E is isomorphic to F(«) since it contains both F and
. ]

Theorem 19.5. Let E = F(a) be a simple extension of F, where « € E is algebraic
over F. Suppose that the degree of & over F is n. Then every element 8 € E can be
expressed uniquely in the form

ﬁ = bo + b](x + e+ bn,loc”ﬂ

forb; e F.
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Proof. Since ¢,(F[x]) = F(«), every element in E = F(a) must be of the form
o (f(x)) = f(«), where f(a) is a polynomial in « with coefficients in F. Let

p(x)=x"+a, 1 x" ¥+ ag

be the minimal polynomial of a. Then p(«) = 0; hence,

a" = —a, 8"~ — ay.
Similarly,
‘xn+1 — (X(Xn
=—a,a" —a, " -~ apa
n-1 n-1
=—an_1(—aya" = —ag) —ay_a”T - —aga.

Continuing in this manner, we can express every monomial a™, m > n, as a linear
combination of powers of « that are less than n. Hence, any 8 € F(a) can be

written as

B=bo+ba+-+b, a" .

To show uniqueness, suppose that
B=bo+bia+-+b,a" " =co+ it +cyqa”!
for b; and c; in F. Then
g(x) = (bo—co) + (by —cr)x + -+ (by_y — cp)x" ™

isin F[x] and g(e) = 0. Since the degree of g(x) is less than the degree of p(x),
the irreducible polynomial of «, g(x) must be the zero polynomial. Consequently,

bo—co=b—cy=-=by1-c41=0,
orb; =c;fori=0,1,...,n - L Therefore, we have shown uniqueness. ]

Example 7. Since x* + 1 is irreducible over R, (x? +1) is a maximal ideal in R[x].
So E = R[x]/{x? +1) is a field extension of R that contains a root of x* + 1. Let
a = x+{x?+1). We can identify E with the complex numbers. By Proposition 19.4,
E is isomorphic to R(«) = {a + ba : a, b € R}. We know that &® = -1 in E, since

1= (x+{(x*+1))*+ A+ (x*+1)) =(x*+1)+ (x> +1) =0.

Hence, we have an isomorphism of R(«) with C defined by the map that takes
a+batoa+bi
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Let E be a field extension of a field F. If we regard E as a vector space over F,
then we can bring the machinery of linear algebra to bear on the problems that we
will encounter in our study of fields. The elements in the field E are vectors; the
elements in the field F are scalars. We can think of addition in E as adding vectors.
When we multiply an element in E by an element of F, we are multiplying a vector
by a scalar. This view of field extensions is especially fruitful if a field extension
E of F is a finite dimensional vector space over F, and Theorem 19.5 states that
E = F(a) is finite dimensional vector space over F with basis {1, a, a2, ..., a"}.

If an extension field E of a field F is a finite dimensional vector space over F of
dimension #, then we say that E is a finite extension of degree n over F. We write

[E:F]=n.

to indicate the dimension of E over F.

Theorem 19.6. Every finite extension field E of a field F is an algebraic extension.
Proof. Let a € E. Since [E : F] = n, the elements

La,...,«
cannot be linearly independent. Hence, there exist a; € F, not all zero, such that

a,a” +a, 0"+ + aja+ag = 0.
Therefore,
p(x) =anx" + - +ag € F[x]

is a nonzero polynomial with p(«) = 0. ]

Remark. Theorem 19.6 says that every finite extension of a field F is an algebraic
extension. The converse is false, however. We will leave it as an exercise to show
that the set of all elements in R that are algebraic over @ forms an infinite field
extension of Q.

The next theorem is a counting theorem, similar to Lagrange’s Theorem in
group theory. Theorem 19.6 will prove to be an extremely useful tool in our
investigation of finite field extensions.

Theorem 19.7. If E is a finite extension of F and K is a finite extension of E, then
K is a finite extension of F and

[K:F]=[K:E][E:F].

Proof. Let{ai,...,a,} beabasis for E as a vector space over Fand {f1, ..., Bm}
be a basis for K as a vector space over E. We claim that {«;3;} is a basis for K over
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F. We will first show that these vectors span K. Let u € K. Then u = ¥, b;;
and bj = Y, a;j«;, where b; € E and a;; € F. Then

=5 (L) - Zoutasy
j=1 \i=1 L]

So the mn vectors «;8; must span K over F.
We must show that {«;f8;} are linearly independent. Recall that a set of vectors
V1,V2,...,Vy in a vector space V are linearly independent if

CiVi+ vy + -+ €V, =0
implies that ¢; = ¢, =--- = ¢, = 0. Let
u= Zc,-j((xiﬁj) =0
i.j
for ¢;; € F. We need to prove that all of the ¢;;’s are zero. We can rewrite u as
m n
2 (Z Cij“i) Bj =0,
j=1 \i=1
where 33, c;ja; € E. Since the ;s are linearly independent over E, it must be the
case that
n
Z C,‘j(X,‘ =0
i=1
for all j. However, the «; are also linearly independent over F. Therefore, c;; = 0

for all i and j, which completes the proof. ]

The following corollary is easily proved using mathematical induction.

Corollary 19.8. If F;isafield fori =1,..., k and F;,, is a finite extension of F;,
then F is a finite extension of F; and

[Fe: R = (Bt For- [Pt R,

Corollary 19.9. Let E be an extension field of F. If « € E is algebraic over F with
minimal polynomial p(x) and 8 € F(a) with minimal polynomial g(x), then
deg g(x) divides deg p(x).

Proof. We know that deg p(x) = [F(«) : F] and degg(x) = [F(B) : F]. Since
Fc F(f) c F(a),

[F(a) : F] = [F(a) : F(B)][F(B) : F]. u
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Example 8. Let us determine an extension field of () containing V3 + V5. Ttis
easy to determine that the minimal polynomial of /3 + /5 is x* — 16x + 4. It
follows that

[Q(V3+V5):Q]=4.

We know that {1,/3 } is a basis for Q(1/3 ) over Q. Hence, /3 + \/5 cannot be
in Q(1/3). It follows that \/5 cannot be in Q(~/3 ) either. Therefore, {1, V5 }is
a basis for Q(+v/3,v/5) = (Q(+v/3))(V/5) over Q(+/3 ) and {1,/3,1/5,/3\/5 =
V15 } is a basis for @(+/3,1/5) = Q(+/3 + /5 ) over Q. This example shows that
it is possible that some extension F(ay, ..., ;) is actually a simple extension of
F even though n > 1.

Example 9. Let us compute a basis for Q(v/5,/5 i), where \/5 is the positive
square root of 5 and /5 is the real cube root of 5. We know that /5 i ¢ Q(\S/g ),

[Q(V5,V5i): Q(V/5)] =2.

It is easy to determine that {1,/5i } is a basis for Q(¥/5,/5) over Q(v/5). We
also know that {1, /5, (v/5)?} is a basis for Q(~/5 ) over Q. Hence, a basis for
Q(+/5,v/5) over Q is

(1,V5i,V/5,(v/5)2,(¥/5)°1,(¥/5)7i =5¥/5i or V/5i}.

Notice that ¥/5 i is a zero of x® +5. We can show that this polynomial is irreducible
over Q using Eisenstein’s Criterion, where we let p = 5. Consequently,

Qc Q(V5) c Q(V5,V51).
But it must be the case that Q(¥/5i) = Q(~/5,/5 ), since the degree of both of
these extensions is 6.

Theorem 19.10. Let E be a field extension of F. Then the following statements
are equivalent.

1. E is a finite extension of F.

2. There exists a finite number of algebraic elements o, ...,a, € E such that
E=F(ay,...,0).

3. There exists a sequence of fields
E=F(a,...,a,) > F(ay,...,ay1) -2 F(a;) o F,

where each field F(ay, ..., a;) is algebraic over F(ay, ..., a;_).

Proof. (1) = (2). Let E be a finite algebraic extension of F. Then E is a finite
dimensional vector space over F and there exists a basis consisting of elements
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a1,...,a, in E such that E = F(ay,...,a,). Each «; is algebraic over F by
Theorem 19.6.
(2) = (3). Suppose that E = F(ay, ..., a, ), where every a; is algebraic over F.
Then
E=F(a,...,an) > F(a1,...,a,1) -2 F(a1) o F,

where each field F(ay, ..., «;) is algebraic over F(ay, ..., a;1).
(3) = (1). Let
E=F(a,...,a,) 2> F(et1,...,ay1) 2+ 2> F(a1) o F,
where each field F(ay, ..., a;) is algebraic over F(ay, ..., a;_;). Since
F(ap,...,a;) =F(ap,...,a;1)(a;)
is simple extension and «; is algebraic over F(ay, ..., a;_1), it follows that
[Flap,...,a;): Fag,...,ai1)]
is finite for each i. Therefore, [E : F] is finite. [

Algebraic Closure

Given a field F, the question arises as to whether or not we can find a field E
such that every polynomial p(x) has a root in E. This leads us to the following
theorem.

Theorem 19.11. Let E be an extension field of F. The set of elements in E that are
algebraic over F form a field.

Proof. Let «, 8 € E be algebraic over F. Then F(a, ) is a finite extension of F.
Since every element of F(«, ) is algebraic over F, a = 3, a/f3, and /3 (8 # 0)
are all algebraic over F. Consequently, the set of elements in E that are algebraic
over F forms a field. ]

Corollary 19.12. The set of all algebraic numbers forms a field; that is, the set of
all complex numbers that are algebraic over ) makes up a field.

Let E be a field extension of a field F. We define the algebraic closure of a field
F in E to be the field consisting of all elements in E that are algebraic over F. A
field F is algebraically closed if every nonconstant polynomial in F[x] has a root
inF.

Theorem 19.13. A field F is algebraically closed if and only if every nonconstant
polynomial in F[x] factors into linear factors over F[x].
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Proof. Let F be an algebraically closed field. If p(x) € F[x] is a nonconstant
polynomial, then p(x) has a zero in F, say «. Therefore, x — « must be a factor
of p(x) and so p(x) = (x — a)q1(x), where deg q;(x) = deg p(x) — 1. Continue
this process with ¢;(x) to find a factorization

p(x) = (x = @) (x = B)qa(x),

where deg g,(x) = deg p(x)—2. The process must eventually stop since the degree
of p(x) is finite.

Conversely, suppose that every nonconstant polynomial p(x) in F[x] factors
into linear factors. Let ax — b be such a factor. Then p(b/a) = 0. Consequently, F
is algebraically closed. ]

Corollary 19.14. An algebraically closed field F has no proper algebraic extension
E.

Proof. Let E be an algebraic extension of F; then F c E. For « € E, the minimal
polynomial of « is x — . Therefore, « € F and F = E. ]

Theorem 19.15. Every field F has a unique algebraic closure.

It is a nontrivial fact that every field has a unique algebraic closure. The proof
is not extremely difficult, but requires some rather sophisticated set theory. We
refer the reader to [3], [4], or [7] for a proof of this result.

We now state the Fundamental Theorem of Algebra, first proven by Gauss
at the age of 22 in his doctoral thesis. This theorem states that every polynomial
with coefficients in the complex numbers has a root in the complex numbers. The
proof of this theorem will be given in Chapter 21.

Theorem 19.16. (Fundamental Theorem of Algebra) The field of complex num-
bers is algebraically closed.

19.2 Splitting Fields

Let F be a field and p(x) be a nonconstant polynomial in F[x]. We already know
that we can find a field extension of F that contains a root of p(x). However, we
would like to know whether an extension E of F containing all of the roots of
p(x) exists. In other words, can we find a field extension of F such that p(x)
factors into a product of linear polynomials? What is the “smallest” extension
containing all the roots of p(x)?

Let F be a field and p(x) = ag + a;x + - + a,x" be a nonconstant polynomial
in F[x]. An extension field E of F is a splitting field of p(x) if there exist elements
&1, ..., 0, in Esuch that E = F(ay,...,a,) and

p(x) = (x =) (x = az)-+(x = atn).



300 FIELDS

A polynomial p(x) € F[x] splits in E if it is the product of linear factors in E[x].

Example 10. Let p(x) = x* + 2x? — 8 be in Q[x]. Then p(x) has irreducible
factors x2 — 2 and x2 + 4. Therefore, the field Q(v/2, i) is a splitting field for p(x).

Example 11. Let p(x) = x> — 3 be in Q[x]. Then p(x) has a root in the field
Q(~/3). However, this field is not a splitting field for p(x) since the complex cube
roots of 3,
3+ (¥/3)%
> ,
are not in Q(v/3).

Theorem 19.17. Let p(x) € F[x] be a nonconstant polynomial. Then there exists
a splitting field E for p(x).

Proof. We will use mathematical induction on the degree of p(x). If deg p(x) =1,
then p(x) is a linear polynomial and E = F. Assume that the theorem is true for
all polynomials of degree k with 1 < k < n and let deg p(x) = n. We can assume
that p(x) is irreducible; otherwise, by our induction hypothesis, we are done.
By Theorem 19.1, there exists a field K such that p(x) has a zero a; in K. Hence,
p(x) = (x — a1)q(x), where q(x) € K[x]. Since degq(x) = n — 1, there exists
a splitting field E 5 K of q(x) that contains the zeros a5, ..., a, of p(x) by our
induction hypothesis. Consequently,

E=K(az,...,a,)=F(a1,...,a,)
is a splitting field of p(x). ]

The question of uniqueness now arises for splitting fields. This question is
answered in the affirmative. Given two splitting fields K and L of a polynomial
p(x) € F[x], there exists a field isomorphism ¢ : K — L that preserves F. In
order to prove this result, we must first prove a lemma.

Lemma 19.18. Let ¢ : E — F be an isomorphism of fields. Let K be an extension
field of E and « € K be algebraic over E with minimal polynomial p(x). Suppose
that L is an extension field of F such that 8 is root of the polynomial in F[x] ob-
tained from p(x) under the image of ¢. Then ¢ extends to a unique isomorphism
v : E(a) — F(B) such that y(«) = 8 and v agrees with ¢ on E.

Proof. If p(x) has degree n, then by Theorem 19.5 we can write any element in
E(«) as a linear combination of I, &, ..., «"!. Therefore, the isomorphism that
we are seeking must be

v(ag+ara+ -+ a,_ 0" ) = ¢(ag) + ¢(a)p + -+ ¢(an1)p" ",
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where

dp + @+ + ap_a !

is an element in E(«). The fact that y is an isomorphism could be checked by
direct computation; however, it is easier to observe that y is a composition of
maps that we already know to be isomorphisms.

We can extend ¢ to be an isomorphism from E[x] to F[x], which we will also
denote by ¢, by letting

d(ag+arx + -+ anx") =¢(ag) + p(a))x + -+ ¢(a,)x".

This extension agrees with the original isomorphism ¢ : E — F, since constant
polynomials get mapped to constant polynomials. By assumption, ¢(p(x)) =
q(x); hence, ¢ maps (p(x)) onto (g(x)). Consequently, we have an isomorphism
¢ : E[x]/{ p(x)) = F[x]/{ q(x)). By Proposition 19.4, we have isomorphisms

o : E[x]/(p(x)) > F(«)

and

7: Fx]/{q(x)) ~ F(B),

defined by evaluation at & and 3, respectively. Therefore, ¥ = 7' ¢ o is the required
isomorphism.

E@ — —  F(p)
| |
(

E[x)/(p(x)) > Fx]/(q(x))

¢
E —
We leave the proof of uniqueness as a exercise. ]

Theorem 19.19. Let ¢ : E — F be an isomorphism of fields and let p(x) be a
nonconstant polynomial in E[x] and g(x) the corresponding polynomial in F[x ]
under the isomorphism. If K is a splitting field of p(x) and L is a splitting field of
q(x), then ¢ extends to an isomorphism y : K — L.

Proof. We will use mathematical induction on the degree of p(x). We can assume
that p(x) is irreducible over E. Therefore, g(x) is also irreducible over F. If
deg p(x) =1, then by the definition of a splitting field, K = E and L = F and there
is nothing to prove.
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Assume that the theorem holds for all polynomials of degree less than #. Since
K is a splitting field of E, all of the roots of p(x) are in K. Choose one of these
roots, say «, such that E ¢ E(«a) c K. Similarly, we can find a root § of g(x)
in L such that F ¢ F(f) c L. By Lemma 19.18, there exists an isomorphism
¢ : E(a) —» F(pB) such that ¢(a) = 8 and ¢ agrees with ¢ on E.
v

K — L
[
E(a) > F(B)
|

E —¢> F

Now write p(x) = (x — &) f(x) and g(x) = (x — 8)g(x), where the degrees
of f(x) and g(x) are less than the degrees of p(x) and q(x), respectively. The
field extension K is a splitting field for f(x) over E(«), and L is a splitting field
for g(x) over F(f). By our induction hypothesis there exists an isomorphism
¥ : K — L such that y agrees with ¢ on E(a). Hence, there exists an isomorphism
v : K — L such that y agrees with ¢ on E. ]

Corollary 19.20. Let p(x) be a polynomial in F[x]. Then there exists a splitting
field K of p(x) that is unique up to isomorphism.

19.3 Geometric Constructions

In ancient Greece, three classic problems were posed. These problems are geomet-

ric in nature and involve straightedge-and-compass constructions from what is

now high school geometry; that is, we are allowed to use only a straightedge and
compass to solve them. The problems can be stated as follows.

1. Given an arbitrary angle, can one trisect the angle into three equal subangles
using only a straightedge and compass?

2. Given an arbitrary circle, can one construct a square with the same area using
only a straightedge and compass?

3. Given a cube, can one construct the edge of another cube having twice the
volume of the original? Again, we are only allowed to use a straightedge and
compass to do the construction.

After puzzling mathematicians for over two thousand years, each of these con-

structions was finally shown to be impossible. We will use the theory of fields

to provide a proof that the solutions do not exist. It is quite remarkable that
the long-sought solution to each of these three geometric problems came from
abstract algebra.
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First, let us determine more specifically what we mean by a straightedge and
compass, and also examine the nature of these problems in a bit more depth. To
begin with, a straightedge is not a ruler. We cannot measure arbitrary lengths
with a straightedge. It is merely a tool for drawing a line through two points. The
statement that the trisection of an arbitrary angle is impossible means that there
is at least one angle that is impossible to trisect with a straightedge-and-compass
construction. Certainly it is possible to trisect an angle in special cases. We can
construct a 30° angle; hence, it is possible to trisect a 90° angle. However, we will
show that it is impossible to construct a 20° angle. Therefore, we cannot trisect a
60° angle.

Constructible Numbers

A real number « is constructible if we can construct a line segment of length |«|
in a finite number of steps from a segment of unit length by using a straightedge
and compass.

Theorem 19.21. The set of all constructible real numbers forms a subfield F of
the field of real numbers.

Proof. Let & and f be constructible numbers. We must show that a + , & — 3,
af3, and a/B (B # 0) are also constructible numbers. We can assume that both «
and f are positive with a > 3. It is quite obvious how to construct a + f and a - f.
To find a line segment with length a3, we assume that § > 1 and construct the
triangle in Figure 19.1 such that triangles AABC and A ADE are similar. Since
/1 = x/p, the line segment x has length «f8. A similar construction can be made
if B < 1. We will leave it as an exercise to show that the same triangle can be used
to construct a/f for § # 0. ]

Figure 19.1. Construction of products

Lemma 19.22. If « is a constructible number, then \/« is a constructible number.

Proof. In Figure 19.2 the triangles AABD, ABCD, and AABC are similar; hence,
1/x = x/a, or x* = a. (]
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A D C

Figure 19.2. Construction of roots

By Theorem 19.21, we can locate in the plane any point P = (p, q) that has ra-
tional coordinates p and g. We need to know what other points can be constructed
with a compass and straightedge from points with rational coordinates.

Lemma 19.23. Let F be a subfield of R.

1. Ifaline contains two points in F, then it has the equation ax + by + ¢ = 0, where
a,b,and careinF.

2. Ifa circle has a center at a point with coordinates in F and a radius that is also in
F, then it has the equation x* + y* + dx + ey + f = 0, where d, e, and f are in F.

Proof. Let (x1, y1) and (x,, y2) be points on a line whose coordinates are in F. If
X1 = X2, then the equation of the line through the two points is x — x; = 0, which
has the form ax + by + ¢ = 0. If x; # x,, then the equation of the line through the
two points is given by

Y= (u) (x = x1),
Xy — X1
which can also be put into the proper form.

To prove the second part of the lemma, suppose that (x;, y;) is the center of a
circle of radius r. Then the circle has the equation

(x-x)’+(y-p)-r*=o.
This equation can easily be put into the appropriate form. ]

Starting with a field of constructible numbers F, we have three possible ways
of constructing additional points in R with a compass and straightedge.
1. To find possible new points in R, we can take the intersection of two lines, each
of which passes through two known points with coordinates in F.
2. The intersection of a line that passes through two points that have coordinates
in F and a circle whose center has coordinates in F with radius of a length in F
will give new points in R.
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3. We can obtain new points in R by intersecting two circles whose centers have
coordinates in F and whose radii are of lengths in F.

The first case gives no new points in R, since the solution of two equations of the
form ax + by + ¢ = 0 having coefficients in F will always be in F. The third case
can be reduced to the second case. Let

>+ +dixrex+ fi=0

x2+y2+d2x+e2x+f2 =0

be the equations of two circles, where d;, e;, and f; are in F for i = 1,2. These
circles have the same intersection as the circle

>+ y*+dixrex+fi=0

and the line
(di-dy)x+blex—en)y+(f2—h)=0.

The last equation is that of the chord passing through the intersection points of
the two circles. Hence, the intersection of two circles can be reduced to the case
of an intersection of a line with a circle.

Considering the case of the intersection of a line and a circle, we must deter-
mine the nature of the solutions of the equations

ax+by+c=0
x*+y*+dx+ey+ f=0.

If we eliminate y from these equations, we obtain an equation of the form Ax?* +
Bx + C = 0, where A, B, and C are in F. The x coordinate of the intersection

points is given by
_-B+x VB2 - 4AC
e 24
and is in F(\/a ), where & = B — 4AC > 0. We have proven the following lemma.

Lemma 19.24. Let F be a field of constructible numbers. Then the points deter-
mined by the intersections of lines and circles in F lie in the field F(\/a ) for some
ainF.

Theorem 19.25. A real number « is a constructible number if and only if there
exists a sequence of fields

Q=FycFc-cF
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such that F; = F;_;(\/a; ) with a € Fy. In particular, there exists an integer k > 0
such that [Q(«) : Q] = 2%,

Proof. The existence of the F;’s and the «;’s is a direct consequence of Lemma 19.24
and of the fact that

[Fy : Q) = [Fx : Fx1][Feor : Fxoa][Fi: Q] = 25 u

Corollary 19.26. The field of all constructible numbers is an algebraic extension
of Q.

As we can see by the field of constructible numbers, not every algebraic
extension of a field is a finite extension.

Doubling the Cube and Squaring the Circle

We are now ready to investigate the classical problems of doubling the cube and
squaring the circle. We can use the field of constructible numbers to show exactly
when a particular geometric construction can be accomplished.

Doubling the cube is impossible. Given the edge of the cube, it is impossible to
construct with a straightedge and compass the edge of the cube that has twice the
volume of the original cube. Let the original cube have an edge of length 1 and,
therefore, a volume of 1. If we could construct a cube having a volume of 2, then
this new cube would have an edge of length /2. However, v/2 is a zero of the
irreducible polynomial x* — 2 over @; hence, [Q(%/2) : @] = 3. This is impossible,
since 3 is not a power of 2.

Squaring the circle is impossible. Suppose that we have a circle of radius 1. The
area of the circle is 7; therefore, we must be able to construct a square with side
/7. This is impossible since 7 and consequently \/7 are both transcendental.
Therefore, using a straightedge and compass, it is not possible to construct a
square with the same area as the circle.

Trisecting an Angle

Trisecting an arbitrary angle is impossible. We will show that it is impossible to
construct a 20° angle. Consequently, a 60° angle cannot be trisected. We first
need to calculate the triple-angle formula for the cosine:

cos 36 = cos(20 + 0)

= c0s20 cos 0 — sin20sin 0
= (2cos* 0 —1) cos § — 2sin* O cos 6
= (2cos* @ —1) cos 6 — 2(1 - cos* B) cos 6

=4cos® 6 - 3cos.



GEOMETRIC CONSTRUCTIONS 307

The angle 0 can be constructed if and only if & = cos 0 is constructible. Let 0 = 20°.
Then cos 360 = cos 60° = 1/2. By the triple-angle formula for the cosine,

33,1
4o° =300 = —.
2

Therefore, « is a zero of 8x> — 6x — 1. This polynomial has no factors in Z[x], and
hence is irreducible over Q[x]. Thus, [Q@(«) : @] = 3. Consequently, « cannot be
a constructible number.

Historical Note

Algebraic number theory uses the tools of algebra to solve problems in number theory.
Modern algebraic number theory began with Pierre de Fermat (1601-1665). Certainly we
can find many positive integers that satisfy the equation x* + y* = z%; Fermat conjectured
that the equation x” + y" = z" has no positive integer solutions for n > 3. He stated in the
margin of his copy of the Latin translation of Diophantus’ Arithmetica that he had found
a marvelous proof of this theorem, but that the margin of the book was too narrow to
contain it. To date, no one has been able to construct a proof, although the statement has
been verified for all 7 less than or equal to 4 million. This conjecture is known as Fermat’s
Last Theorem.

Attempts to prove Fermats Last Theorem have led to important contributions to
algebraic number theory by such notable mathematicians as Leonhard Euler (1707-1783).
Significant advances in the understanding of Fermat’s Last Theorem were made by Ernst
Kummer (1810-1893). Kummer’s student, Leopold Kronecker (1823-1891), became one of
the leading algebraists of the nineteenth century. Kronecker’s theory of ideals and his study
of algebraic number theory added much to the understanding of fields.

David Hilbert (1862-1943) and Hermann Minkowski (1864-1909) were among the
mathematicians who led the way in this subject at the beginning of the twentieth century.
Hilbert and Minkowski were both mathematicians at Gottingen University in Germany.
Gottingen was truly one the most important centers of mathematical research during the
last two centuries. The large number of exceptional mathematicians who studied there
included Gauss, Dirichlet, Riemann, Dedekind, Noether, and Weyl.

André Weil answered questions in number theory using algebraic geometry, a field
of mathematics that studies geometry by studying commutative rings. From about 1955
to 1970, A. Grothendieck dominated the field of algebraic geometry. Pierre Deligne, a
student of Grothendieck, solved several of Weil’s number-theoretic conjectures. One of
the most recent contributions to algebra and number theory is Gerd Falting’s proof of the
Mordell-Weil conjecture. This conjecture of Mordell and Weil essentially says that certain
polynomials p(x, y) in Z[x, y] have only a finite number of integral solutions.
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Exercises

1. Show that each of the following numbers is algebraic over @ by finding the minimal
polynomial of the number over Q.

(@) \/1/3+7

(b) V3+5

© V3+V2i

(d) cosf+isinffor 0 =2n/nwithneN
() VV2-i

2. Find a basis for each of the following field extensions. What is the degree of each
extension?

(@) Q(v/3,/6) over @

(b) Q(V/2,3/3) over @

(© Q(V2,i) over @

(d) Q(V3,V5,\/7) over @

(©) Q(v/2,9/2) over @

(f) Q(V8) over Q(v2)

(8) Q(i»V2+i,\/3+i)overQ

(h) Q(V2+/5) over Q(/5)

(i) Q(V2,V6+/10) over @(v/3+/5)

3. Find the splitting field for each of the following polynomials.
(a) x* —10x* + 21 over Q (b) x*+1overQ
(c) x*+2x +2overZs (d) x*-3overQ

4. Determine all of the subfields of Q( 3, i ).

5. Show that Z5[x]/(x” + x +1) is a field with eight elements. Construct a multiplication
table for the multiplicative group of the field.

6. Show that the regular 9-gon is not constructible with a straightedge and compass, but
that the regular 20-gon is constructible.

7. Prove that the cosine of one degree (cos1°) is algebraic over @ but not constructible.
8. Can a cube be constructed with three times the volume of a given cube?

9. Prove that Q(v/3, ¥/3, ¥/3, . ..) is an algebraic extension of @ but not a finite extension.
10. Prove or disprove: 7 is algebraic over Q(7°).

11. Let p(x) be a nonconstant polynomial of degree n in F[x]. Prove that there exists a
splitting field E for p(x) such that [E : F] < nl.

12. Prove or disprove: Q(+/2) = Q(1/3).
13. Prove that the fields Q(+/3 ) and Q(+/3 i) are isomorphic but not equal.

14. Let K be an algebraic extension of E, and E an algebraic extension of F. Prove that K
is algebraic over F. [Caution: Do not assume that the extensions are finite.]

15. Prove or disprove: Z[x]/(x> — 2) is a field.
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16. Let F be a field of characteristic p. Prove that p(x) = x¥ — a either is irreducible over
F or splits in F.

17. Let E be the algebraic closure of a field F. Prove that every polynomial p(x) in F[x]
splits in E.

18. If every irreducible polynomial p(x) in F[x] is linear, show that F is an algebraically
closed field.

19. Prove that if & and f3 are constructible numbers such that 8 # 0, then so is a/p.

20. Show that the set of all elements in R that are algebraic over Q form a field extension
of Q that is not finite.

21. Let E be an algebraic extension of a field F, and let o be an automorphism of E leaving
F fixed. Let « € E. Show that ¢ induces a permutation of the set of all zeros of the
minimal polynomial of « that are in E.

22. Showthat Q(v/3,v/7 ) = Q(+/3+v/7 ). Extend your proof to show that Q(+/a, /b ) =
Q(Va+Vb).

23. Let E be a finite extension of a field F. If [E : F] = 2, show that E is a splitting field of
F.

24. Prove or disprove: Given a polynomial p(x) in Z¢[x], it is possible to construct a ring
R such that p(x) has a root in R.

25. Let E be a field extension of F and « € E. Determine [F(a) : F(a®)].

26. Let a,  be transcendental over Q. Prove that either a8 or « + f§ is also transcendental.

27. Let E be an extension field of F and « € E be transcendental over F. Prove that every
element in F(«) that is not in F is also transcendental over F.
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‘Finite Fields

T inite fields appear in many applications of algebra, including coding theory
and cryptography. We already know one finite field, Z,, where p is prime.
In this chapter we will show that a unique finite field of order p” exists for every
prime p, where # is a positive integer. Finite fields are also called Galois fields in
honor of Evariste Galois, who was one of the first mathematicians to investigate
them.

20.1 Structure of a Finite Field

Recall that a field F has characteristic p if p is the smallest positive integer such that
for every nonzero element « in F, we have pa = 0. If no such integer exists, then F
has characteristic o. From Theorem 14.5 we know that p must be prime. Suppose
that F is a finite field with n elements. Then na = 0 for all & in F. Consequently,
the characteristic of F must be p, where p is a prime dividing #. This discussion
is summarized in the following proposition.

Proposition 20.1. If F is a finite field, then the characteristic of F is p, where p is
prime.

Throughout this chapter we will assume that p is a prime number unless
otherwise stated.

Proposition 20.2. If F is a finite field of characteristic p, then the order of F is
p" for some n e N.

Proof. Let ¢ : Z — F be the ring homomorphism defined by ¢(#n) = n - 1. Since
the characteristic of F is p, the kernel of ¢ must be pZ and the image of ¢ must be
a subfield of F isomorphic to Z,. We will denote this subfield by K. Since F is a
finite field, it must be a finite extension of K and, therefore, an algebraic extension
of K. Suppose that [F : K] = n is the dimension of F, where F is a K vector space.
There must exist elements «y,...,a, € F such that any element « in F can be
written uniquely in the form

Q& =a10 + -+ ad,o,,

where the a;’s are in K. Since there are p elements in K, there are p” possible
linear combinations of the «;’s. Therefore, the order of F must be p”. ]
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Lemma 20.3 (Freshman’s Dream). Let p be prime and D be an integral domain
of characteristic p. Then

a”" + b = (a+b)""
for all positive integers #.

Proof. We will prove this lemma using mathematical induction on n. We can use
the binomial formula (see Chapter 1, Example 3) to verify the case for n = 1; that
is,

(a+b)?= EP: (‘Z)akbp’k.

k=0

(i) ) k!(ppi k)l

must be divisible by p, since p cannot divide k!(p — k)!. Note that D is an integral
domain of characteristic p, so all but the first and last terms in the sum must be
zero. Therefore, (a + b)? = af + b?P.

Now suppose that the result holds for all k, where 1 < k < n. By the induction
hypothesis,

If0 < k < p, then

n+l

(a+ b)p"“ =((a+ b)P)p” = (af + bl’)p" - (ap)p" N (bp)pn P
Therefore, the lemma is true for n + 1 and the proof is complete. -

Let F be a field. A polynomial f(x) € F[x] of degree n is separable if it has
n distinct roots in the splitting field of f(x); that is, f(x) is separable when it
factors into distinct linear factors over the splitting field of F. An extension E
of F is a separable extension of F if every element in E is the root of a separable
polynomial in F[x].

Example 1. The polynomial x* — 2 is separable over @ since it factors as (x —
V2)(x+v/2). In fact, Q(1/2) is a separable extension of Q. Let & = a + b\/2 be
any element in Q. If b = 0, then « is a root of x — a. If b # 0, then « is the root of
the separable polynomial

x?—2ax+a?-2b* = (x— (a+bV2))(x - (a-bV2)).

Fortunately, we have an easy test to determine the separability of any polyno-

mial. Let

f(x)=ag+ax+ +a,x"
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be any polynomial in F[x]. Define the derivative of f(x) to be

f/(x) = ay +2ayx + - + na,x"".
Lemma 20.4. Let F be a field and f(x) € F[x]. Then f(x) is separable if and
onlyif f(x) and f'(x) are relatively prime.

Proof. Let f(x) be separable. Then f(x) factors over some extension field of F as
f(x) = (x—a)(x - az)(x —«,), where a; # «; for i # j. Taking the derivative
of f(x), we see that

f(x) = (x—aa)(x =) + (x =) (x — a3)(x — )

fot (x—ag) e (x—apr).

Hence, f(x) and f’(x) can have no common factors.
To prove the converse, we will show that the contrapositive of the statement is
true. Suppose that f(x) = (x — a)¥g(x), where k > 1. Differentiating, we have

f'(x) = k(x =) g(x) + (x — ) g (x).
Therefore, f(x) and f'(x) have a common factor. ]

Theorem 20.5. For every prime p and every positive integer n, there exists a finite
field F with p" elements. Furthermore, any field of order p” is isomorphic to the
splitting field of x?* — x over Z,,.

Proof. Let f(x) = x*" — x and let F be the splitting field of f(x). Then by
Lemma 20.4, f(x) has p” distinct zeros in F, since f(x) = p"xP"~' —1= -1is
relatively prime to f(x). We claim that the roots of f(x) form a subfield of F.
Certainly o and 1 are zeros of f(x). If « and f3 are zeros of f(x), then a +  and
aff are also zeros of f(x), since a?” + 2" = (a + )P and a?" B?" = (af)?". We
also need to show that the additive inverse and the multiplicative inverse of each
root of f(x) are roots of f(x). For any zero « of f(x), —a = (p-1)aisalsoa
zero of f(x). If « # 0, then (a™1)?" = («?")~! = a~. Since the zeros of f(x)
form a subfield of F and f(x) splits in this subfield, the subfield must be all of F.

Let E be any other field of order p”. To show that E is isomorphic to F, we
must show that every element in E is a root of f(x). Certainly o is a root of f(x).
Let a be a nonzero element of E. The order of the multiplicative group of nonzero
elements of E is p" — 1; hence, a?" ' =1or af” — a = 0. Since E contains p"
elements, E must be a splitting field of f(x); however, by Corollary 19.20, the
splitting field of any polynomial is unique up to isomorphism. ]
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GF(p*)

/ \
GF(p®) / GE(p'?)
GF(p*) / GF(p®)
GF(p?) GF(p®)

\ /

GE(p)

Figure 20.1. Subfields of GF(p**)

The unique finite field with p” elements is called the Galois field of order p”.
We will denote this field by GF(p").

Theorem 20.6. Every subfield of the Galois field GF(p”) has p™ elements, where
m divides n. Conversely, if m | n for m > 0, then there exists a unique subfield of
GF(p") isomorphic to GF(p™).

Proof. Let F be a subfield of E = GF(p"). Then F must be a field extension of
K that contains p™ elements, where K is isomorphic to Z,. Then m | n, since
[E:K]=[E:F][F:K].

To prove the converse, suppose that m | n for some m > 0. Then p™ — 1
divides p" — 1. Consequently, x?" ! —1 divides x?" ! — 1. Therefore, x”" — x must
divide x?" — x, and every zero of x”" — x is also a zero of x*" — x. Thus, GF(p")
contains, as a subfield, a splitting field of x" — x, which must be isomorphic to
GF(p™). ]

Example 2. The lattice of subfields of GF(p**) is given in Figure 20.1.

With each field F we have a multiplicative group of nonzero elements of F
which we will denote by F*. The multiplicative group of any finite field is cyclic.
This result follows from the more general result that we will prove in the next
theorem.

Theorem 20.7. If G is a finite subgroup of F*, the multiplicative group of nonzero
elements of a field F, then G is cyclic.
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Proof. Let G be a finite subgroup of F* with n = p{"---p7* elements, where p;’s are
(not necessarily distinct) primes. By the Fundamental Theorem of Finite Abelian
Groups,

Gz prl X oeee X Zpik.

Let m be the least common multiple of pi, ..., pi*. Then G contains an element
of order m. Since every « in G satisfies x” — 1 for some r dividing m, « must also
be a root of x™ — 1. Since x™ — 1 has at most m roots in F, n < m. On the other
hand, we know that m < |G|; therefore, m = n. Thus, G contains an element of
order n and must be cyclic. [ ]

Corollary 20.8. The multiplicative group of all nonzero elements of a finite field
is cyclic.

Corollary 20.9. Every finite extension E of a finite field F is a simple extension
of F.

Proof. Let a be a generator for the cyclic group E* of nonzero elements of E. Then
E = F(a). u

Example 3. The finite field GF(2*) is isomorphic to the field Z,/(1 + x + x*).
Therefore, the elements of GF(2*) can be taken to be

{ag + aya + aa® + aza’ 1a; € Zyand 1 + a + a* = 0}.

Remembering that 1 + « + a* = 0, we add and multiply elements of GF(2*)
exactly as we add and multiply polynomials. The multiplicative group of GF(2*)
is isomorphic to Z;5 with generator a:

al=a al =a+a’ al'=a+a’+a’
a? = o? o =1+a+a® a?=1+a+a’+a°
o’ =al ad =1+a? a®=1+a’+d°
at=1+a o =a+a’ at=1+0a°

2 1 2 1
=a+a’ a=l+a+a? aP®=1

20.2 Polynomial Codes

With knowledge of polynomial rings and finite fields, it is now possible to derive
more sophisticated codes than those of Chapter 7. First let us recall that an
(n, k)-block code consists of a one-to-one encoding function E : Z% — 7% and a
decoding function D : Z} — ZX. The code is error-correcting if D is onto. A code
is a linear code if it is the null space of a matrix H € M, (Z;).
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We are interested in a class of codes known as cyclic codes. Let ¢ : Z5 — 72
be a binary (n, k)-block code. Then ¢ is a cyclic code if for every codeword
(a1, a2, ...,a,), the cyclically shifted n-tuple (a,, a1, az, ..., a,-1) is also a code-
word. Cyclic codes are particularly easy to implement on a computer using shift
registers [2, 3].

Example 4. Consider the (6, 3)-linear codes generated by the two matrices

1 00 1 00
010 1 1 0

0 0 1 1 1 1

@1 0 o |™%=] 1 1

010 01 1

0 0 1 0 0 1

Messages in the first code are encoded as follows:

(000) = (000000)  (100) ~ (100100)
(001) ~ (001001) (101) ~ (101101)
(010) ~ (010010)  (110) ~ (110110)
(011) ~ (011011)  (111) > (111111).

It is easy to see that the codewords form a cyclic code. In the second code, 3-tuples
are encoded in the following manner:

(000) ~ (000000) (100) —
(001) ~ (001111)  (101)
(010) ~ (011110)  (110) ~
(011) ~ (010001) (111) —

111100)
110011)
100010)
101101).

o~ o~~~

This code cannot be cyclic, since (101101) is a codeword but (011011) is not a
codeword.

Polynomial Codes

We would like to find an easy method of obtaining cyclic linear codes. To accom-
plish this, we can use our knowledge of finite fields and polynomial rings over Z,.
Any binary n-tuple can be interpreted as a polynomial in Z,[x]. Stated another
way, the n-tuple (ag, a1, . .., a,-1) corresponds to the polynomial

f(x)=ap+aix +-+a,1x"7",

where the degree of f(x) is at most n — 1.
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For example, the polynomial corresponding to the 5-tuple (10011) is
1+0x +0x> + 1 + 1x* =1+ 27 +x%.

Conversely, with any polynomial f(x) € Z,[x] with deg f(x) < n we can associate
a binary n-tuple. The polynomial x + x> + x* corresponds to the 5-tuple (01101).

Let us fix a nonconstant polynomial g(x) in Z,[x] of degree n — k. We can
define an (#, k)-code C in the following manner. If (ao, ..., ax_;) is a k-tuple to
be encoded, then f(x) = ag+a;x +--+az_,x* is the corresponding polynomial
in Z,[x]. To encode f(x), we multiply by g(x). The codewords in C are all those
polynomials in Z,[x] of degree less than n that are divisible by g(x). Codes

obtained in this manner are called polynomial codes.

Example 5. If welet g(x) =1+ x>, we can define a (6, 3)-code C as follows. To
encode a 3-tuple (ag, a1, a; ), we multiply the corresponding polynomial f(x) =
ag + a1x + ax* by 1 + x>. We are definingamap ¢ : Z3 - ZSby ¢ : f(x)
g(x) f(x). It is easy to check that this map is a group homomorphism. In fact,
if we regard Z as a vector space over Z,, ¢ is a linear transformation of vector
spaces (see Exercise 13, Chapter 18). Let us compute the kernel of ¢. Observe that
¢ (ao, a1, az) = (000000) exactly when

0+ 0x + 0x% + 0x° + 0x* + 0x° = (1+ ) (a¢ + a1x + a,x*)

=ag + @x + arx? + agx> + a;xt + arx°.

Since the polynomials over a field form an integral domain, ag + a;x + a,x? must
be the zero polynomial. Therefore, ker ¢ = {(000)} and ¢ is one-to-one.

To calculate a generator matrix for C, we merely need to examine the way the
polynomials 1, x, and x* are encoded:

1+x*)-1=1+x°
(1+x%)x=x+x*

(1+x7)x® =x* +x°.

We obtain the code corresponding to the generator matrix G; in Example 4. The
parity-check matrix for this code is

1 0
H=| 0 1
0 0

— o O

1 0
0 1
0 0

— o O

Since the smallest weight of any nonzero codeword is 2, this code has the ability
to detect all single errors.
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Rings of polynomials have a great deal of structure; therefore, our immediate
goal is to establish a link between polynomial codes and ring theory. Recall that
x" —1=(x—-1)(x""'+ -+ x +1). The factor ring

R, =Z,[x]/(x" -1)
can be considered to be the ring of polynomials of the form
f(t)=ap+ayt+-+a, t""

that satisfy the condition ¢” = 1. It is an easy exercise to show that Z and R,, are
isomorphic as vector spaces. We will often identify elements in Z} with elements
in Z[x]/{x" = 1). In this manner we can interpret a linear code as a subset of
Z[x]/(x" - 1).

The additional ring structure on polynomial codes is very powerful in de-
scribing cyclic codes. A cyclic shift of an n-tuple can be described by polynomial
multiplication. If f(¢) = ag + ayt + -+ + a,_1t" " is a code polynomial in R,,, then

tf(t) = an1+aot+-+a, ,t""

is the cyclically shifted word obtained from multiplying f(¢) by ¢. The following
theorem gives a beautiful classification of cyclic codes in terms of the ideals of R,,.

Theorem 20.10. A linear code C in Z% is cyclic if and only if it is an ideal in
R, =Z[x]/(x" -1).

Proof. Let C be a linear cyclic code and suppose that f(¢) is in C. Then ¢f(¢)
must also be in C. Consequently, t* f(¢) is in C for all k € N. Since C is a linear
code, any linear combination of the codewords f(t), tf(t), t2f(t),...,t" " f(t)
is also a codeword; therefore, for every polynomial p(t), p(¢) f(t) is in C. Hence,
C is an ideal.

Conversely, let C be an ideal in Z,[x]/(x" + 1). Suppose that f(t) = a¢ +
ajt + -+ a,_1t"'is a codeword in C. Then tf(t) is a codeword in C; that is,
(ai,...,an-1,a0) isin C. ]

Theorem 20.10 tells us that knowing the ideals of R, is equivalent to knowing
the linear cyclic codes in Z}. Fortunately, the ideals in R, are easy to describe.
The natural ring homomorphism ¢ : Z,[x] - R, defined by ¢[f(x)] = f(¢)
is a surjective homomorphism. The kernel of ¢ is the ideal generated by x” — 1.
By Theorem 14.14, every ideal C in R, is of the form ¢(I), where I is an ideal
in Z,[x] that contains (x" — 1). By Theorem 15.12, we know that every ideal I
in Z,[x] is a principal ideal, since Z, is a field. Therefore, I = (g(x)) for some
unique monic polynomial in Z,[x]. Since (x" — 1) is contained in I, it must be
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the case that g(x) divides x” — 1. Consequently, every ideal C in R,, is of the form

C=(g9()) = {f(1)g(1) : f(t) € Ry and g(x) | (x" ~1) in Z5[x]}.

The unique monic polynomial of the smallest degree that generates C is called
the minimal generator polynomial of C.

Example 6. If we factor x” — 1 into irreducible components, we have
¥ —1=(1+x)A+x+x°)(1+x%+x°).

We see that g(t) = (1+t+1) generates an ideal C in R;. This codeisa (7, 4)-block
code. As in Example 5, it is easy to calculate a generator matrix by examining
what g(t) does to the polynomials 1, t, t2, and #>. A generator matrix for C is

9)

1}
S OO O
S O = O = = O
S = O = = O O
—_ O = = O O O

In general, we can determine a generator matrix for an (n, k)-code C by the
manner in which the elements ¢* are encoded. Let x" —1 = g(x)h(x) in Z,[x]. If
g(x) = go+ gix + -+ gn_rx" K and h(x) = ho + hyx + - + hyx¥, then the n x k
matrix

go 0 vee 0
gl go 0
G=| Gnk Gntka1 - 9o
0 gn_k gl
0 0 Gn—k

is a generator matrix for the code C with generator polynomial g(t). The parity-
check matrix for C is the (n — k) x n matrix

0 - 0 0 h - h
0 « 0 hy - hy O
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We will leave the details of the proof of the following proposition as an exercise.

Proposition 20.11. Let C = (g(t)) be a cyclic code in R, and suppose that x" —
1 = g(x)h(x). Then G and H are generator and parity-check matrices for C,
respectively. Furthermore, HG = 0.

Example 7. In Example 6,
7 _ 1= _ 3 2, 4
x"=1=g(x)h(x)=(1+x+x")(1+x+x"+x%).

Therefore, a parity-check matrix for this code is

H =

— O O

01 0 1 1
1 01 110
01 1 0 0
To determine the error-detecting and error-correcting capabilities of a cyclic

code, we need to know something about determinants. If a4, ..., a, are elements
in a field F, then the n x n matrix

1 1 1
[%4] %% An
2 2 2
ay %) &y
n—1 n—-1 n—-1
L5t %) Ay

is called the Vandermonde matrix. The determinant of this matrix is called the
Vandermonde determinant. We will need the following lemma in our investigation
of cyclic codes.

Lemma 20.12. Let a4, ..., a, be elements in a field F with n > 2. Then

“1 az e ai’l
2 2 2

o o o _ L .

det 1 2 no = J] (ai-aj).
. : . . 1<j<ign
n-1 n—-1 n—1
451 @) (494

In particular, if the a;’s are distinct, then the determinant is nonzero.
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Proof. We will induct on n. If n = 2, then the determinant is &, — «;. Let us
assume the result for n — 1 and consider the polynomial p(x) defined by

1 1 1 1
a 2% xKy—1 X
2 2 2 2
p(x)=det] % @ Fpp X
n—1 n-1 n-1 n-1
o o R SR

Expanding this determinant by cofactors on the last column, we see that p(x) isa
polynomial of at most degree n — 1. Moreover, the roots of p(x) are a;, ..., oty—1,
since the substitution of any one of these elements in the last column will produce a
column identical to the last column in the matrix. Remember that the determinant
of a matrix is zero if it has two identical columns. Therefore,

p(x) = (x =) (x = az)-++(x = &n1) B,

where
1 1 1
451 (4%} o Op
2 2 2
B=(-1)""det] M C T
n-2 n-2 n-2
51 %) Kn-1

By our induction hypothesis,

B=(D"" [ (ai-ay).

1<j<i<n-1
If we let x = «,,, the result now follows immediately. ]

The following theorem gives us an estimate on the error detection and correc-
tion capabilities for a particular generator polynomial.
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Theorem 20.13. Let C = (g(#)) be a cyclic code in R, and suppose that w is a
primitive nth root of unity over Z,. If s consecutive powers of w are roots of g(x),
then the minimum distance of C is at least s + 1.

Proof. Suppose that
g(w") =g(@™) == g(o"7) =0.
Let f(x) be some polynomial in C with s or fewer nonzero coefficients. We can

assume that

is-1

f(x)= aioxi° + ailxi‘ +eta; X

be some polynomial in C. It will suffice to show that all of the a;’s must be o. Since
9(0") = g(0™) == g(a™) =0

and g(x) divides f(x),
fl@") = f@™) == f(@™) =0.

Equivalently, we have the following system of equations:

aio(wf)io + ail(wr)il 4ot ais_l(w’)i‘-' -0

a,«o(wrﬂ)io + ail(wr+1)iz 4ot aiﬂ(wrﬂ)is_l -0

aio(w'+s—1)io + ail(wrﬂfl)il 4o aiFl(errsfl)is,l -0.

Therefore, (a;,,ai,, ..., a;,_,) is a solution to the homogeneous system of linear
equations

(wio)rxo + (wil)rxl ot (wisfl)rxn—l =0

(wi0)7+1xo + (wil)rﬂﬁﬁ +oeet (‘”irl)rﬂx#1 =0

(wio)r+s—1x0 + (wil)r+s—1xl bt (a)is_])r-#s—lxn_1 =0.
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However, this system has a unique solution, since the determinant of the matrix

(wio)r (wil)r (wis_l)r

(wio)r+1 (wil)r+1 (wis,l)r-f-l

(wio ).r+s—1 ((A)il )'r+s—1 (wis_l.)r+371

can be shown to be nonzero using Lemma 20.12 and the basic properties of
determinants (Exercise). Therefore, this solution mustbe a;, = a;, =--- =4, _, =
0. [ ]

BCH Codes

Some of the most important codes are BCH codes, discovered independently by
A. Hocquenghem in 1959 and by R. C. Bose and D. V. Ray-Chaudhuri in 1960.
The European and transatlantic communication systems both use BCH codes.
Information words to be encoded are of length 231, and a polynomial of degree
24 is used to generate the code. Since 231 + 24 = 255 = 2% — 1, we are dealing with
a (255, 231)-block code. This BcH code will detect six errors and has a failure rate
of 1in 16 million. One advantage of BCH codes is that efficient error correction
algorithms exist for them.

The idea behind BcH codes is to choose a generator polynomial of smallest
degree that has the largest error detection and error correction capabilities. Let
d = 2r + 1 for some r > 0. Suppose that w is a primitive nth root of unity over Z,,
and let m;(x) be the minimal polynomial over Z, of w’. If

g(x) = lcm[ml(x)’ mZ(x)> cee er(x)]’

then the cyclic code (g(¢)) in R,, is called the BcH code of length n and distance
d. By Theorem 20.13, the minimum distance of C is at least d.

Theorem 20.14. Let C = (g(t)) be a cyclic code in R,,. The following statements
are equivalent.

1. The code C is a BCH code whose minimum distance is at least d.

2. A code polynomial f(t) isin C if and only if f (w') = 0 for1< i < d.

3. The matrix

1 o - w"!
L o @t e oD@
H _ 1 w3 w6 w(nfl)(s)

1 w‘2r w.4r w(n—‘l)(Zr)
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is a parity-check matrix for C.

Proof. (1) = (2). If f(¢) is in C, then g(x) | f(x) in Z,[x]. Hence, for i =
1,...,2r, f(w') = 0 since g(w') = 0. Conversely, suppose that f(w') = 0 for
1 < i < d. Then f(x) is divisible by each m;(x), since m;(x) is the minimal
polynomial of w’. Therefore, g(x) | f(x) by the definition of g(x). Consequently,
f(x) is a codeword.

(2) = (3). Let f(t) = ag + art + -+ + a,_;vt" ! be in R,,. The corresponding
n-tuple in 74 is x = (aga;---a,_1)". By (2),

g+ AW+ + ap_j0" ! f(w)
ap + a1w* + -+ a, 1 (w?)"! f(w?)

Hx = ) - . _
ap + aw* + -+ a,_(0? )"} f(w?)

exactly when f(t) is in C. Thus, H is a parity-check matrix for C.

(3) = (1). By (3), a code polynomial f(t) = ag + ajt + - + a,_t" ' is in
C exactly when f(w') = 0 for i = 1,...,2r. The smallest such polynomial is
g(t) =lem[m(t),..., my,(t)]. Therefore, C = (g(t)). ]

Example 8. It is easy to verify that x'> — 1 € Z,[x] has a factorization
K ol=(x+ D)+ x+ D)+ D) P D (7 xP a0+ 1),

where each of the factors is an irreducible polynomial. Let w be a root of 1+ x + x*.
The Galois field GF(2*) is

{ap + ay0 + a,0* + azw’ 1 a; € Zy and 1+ w + 0* = 0}.

By Example 3, w is a primitive 15th root of unity. The minimal polynomial of w is
my(x) =1+ x + x*. It is easy to see that w? and w* are also roots of m,(x). The
minimal polynomial of w? is m,(x) = 1+ x + x> + x* + x*. Therefore,

g('x) = m](X)T’le(x) = 1+X4 +x6 +x7 +x8

has roots w, w?, w?, w*. Since both m;(x) and m, (x) divide x'> -1, the BcH code
isa (15,7)-code. If x> =1 = g(x)h(x), then h(x) = 1+ x* + x° + x7; therefore, a
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parity-check matrix for this code is

0000 O0OOT1TT1OUO0OT1UO0O0TO0?1
0 000O0O0OI1 1 O01O0O0O0OTI1O
000001101 O0O0O0OT1O0O0
00001 1010O0O0T1O0O0TO
0001101 00O0O0T1O0O0O0TO0
0 01170100O01O0O0O0O0TO0
01 1010O0O0T1O0UO0TUO0OUO0OGO0OTO
110100 O01O0O0OO0O0OO0OO0OTGO

Exercises

1. Calculate each of the following.

(a) [GF(3%):GF(3)] (b) [GF(128) : GF(16)]

(c) [GF(625): GF(25)] (d) [GF(p™): GE(p*)]

2. Calculate [GF(p™) : GF(p")], where n | m.
3. What is the lattice of subfields for GF(p*°)?
4. Let a be a zero of x* + x2 + 1 over Z,. Construct a finite field of order 8. Show that
x® + x% + 1splits in Z,(«).
5. Construct a finite field of order 27.
6. Prove or disprove: Q” is cyclic.
7. Factor each of the following polynomials in Z,[x].
(@) x°-1 b)) xX*+x°+xt+ 0+ +x+1
() x° -1 d x*+x>+x*+x+1
8. Prove or disprove: Z[x]/(x* + x +1) = Z,[x]/{x* + x* +1).
9. Determine the number of cyclic codes of length # for n = 6, 7, 8, 10.
10. Prove that the ideal (#+1) in R, is the code in Z} consisting of all words of even parity.
11. Construct all BcH codes of
(a) length 7.
(b) length 15.
12. Prove or disprove: There exists a finite field that is algebraically closed.

13. Let p be prime. Prove that the field of rational functions Z, (x) is an infinite field of
characteristic p.

14. Let D be an integral domain of characteristic p. Prove that (a — b)? "=a — b for
alla,beD.

15. Show that every element in a finite field can be written as the sum of two squares.
16. Let E and F be subfields of a finite field K. If E is isomorphic to F, show that E = F.
17. Let F c E c K be fields. If K is separable over F, show that K is also separable over E.

18. Let E be an extension of a finite field F, where F has g elements. Let a € E be algebraic
over F of degree n. Prove that F(«) has q" elements.
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19. Show that every finite extension of a finite field F is simple; that is, if E is a finite
extension of a finite field F, prove that there exists an « € E such that E = F(«).

20. Show that for every n there exists an irreducible polynomial of degree n in Z,[x].

21. Prove that the Frobenius map ¢ : GF(p") - GF(p") givenby ¢ : « — af is an
automorphism of order n.

22. Show that every element in GF(p") can be written in the form a? for some unique
a € GE(p").

23. Let E and F be subfields of GF(p"). If |E| = p" and |F| = p*, what is the order of E N F?

24. Wilson’s Theorem. Let p be prime. Prove that (p —1)! = -1 (mod p).

25. If g(t) is the minimal generator polynomial for a cyclic code C in R,, prove that the
constant term of g(x) is 1.

26. Often it is conceivable that a burst of errors might occur during transmission, as in
the case of a power surge. Such a momentary burst of interference might alter several
consecutive bits in a codeword. Cyclic codes permit the detection of such error bursts.
Let C be an (n, k)-cyclic code. Prove that any error burst up to n — k digits can be
detected.

27. Prove that the rings R, and Zj are isomorphic as vector spaces.

28. Let C be a code in R, that is generated by g(t). If (f(¢)) is another code in R, show
that (g(t)) c (f(¢)) ifand only if f(x) divides g(x) in Z,[x].

29. Let C = (g(t)) be a cyclic code in R, and suppose that x" —1 = g(x)h(x), where
g(x)=go+gx+-+ g,,_kx”_k and h(x) = ho + hix + -+ + hix*. Define G to be the
n x k matrix

go 0 0
9 g0 0

G= In—k In—k-1 9o
0 gn—k gl
0 0 o Guk

0 « 0 0 hy - ho
He 0 « 0 hy - hy 0
hy = hy 0 0 - 0

(a) Prove that G is a generator matrix for C.
(b) Prove that H is a parity-check matrix for C.
(c) Show that HG = 0.
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Additional Exercises: Error Correction for BCH Codes

BCH codes have very attractive error correction algorithms. Let C be a BCH code in Ry,
and suppose that a code polynomial c(t) = co + ¢t + -+ + cn1t" ! is transmitted. Let
w(t) = wo + wit + cwu_1t" ! be the polynomial in R, that is received. If errors have
occurred in bits gy, . .., ax, then w(t) = c(t) + e(t), where e(t) =t + "2 + -+ + "% is
the error polynomial. The decoder must determine the integers a; and then recover c¢(t)
from w(t) by flipping the a;th bit. From w(t) we can compute w(w’) = s; fori =1,...,2r,
where w is a primitive nth root of unity over Z,. We say the syndrome of w(t) is s, ..., S2r.
1. Show that w(t) is a code polynomial if and only if s; = 0 for all i.

2. Show that ) )

iay iay

si=w(w') =e(0') = 0™ + @ + -+ @

fori=1,...,2r. The error-locator polynomial is defined to be
s(x) = (x+ @™)(x + @™)(x + 0%).

3. Recall the (15,7)-block BcH code in Example 7. By Theorem 7.3, this code is capable of
correcting two errors. Suppose that these errors occur in bits a; and a,. The error-locator
polynomial is s(x) = (x + ™) (x + w?). Show that

s(x) = x> +s1x + (512+ S—3)
S1

4 Letw(t) =1+ +t* + £+ + 2 + t*. Determine what the originally transmitted
code polynomial was.
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Galois ‘Theory

ﬂ classic problem of algebra has been to find the solutions of a polynomial

equation. The solution to the quadratic equation was known in antiquity.
Italian mathematicians found general solutions to the general cubic and quartic
equations in the sixteenth century; however, attempts to solve the general fifth-
degree, or quintic, polynomial were repulsed for the next three hundred years.
Certainly, equations such as x> — 1 =0 or x® — x> — 6 = 0 could be solved, but no
solution like the quadratic formula was found for the general quintic,

ax’ +bx* +cx’ +dx* +ex+ f=0.

Finally, at the beginning of the nineteenth century, Ruffini and Abel both found
quintics that could not be solved with any formula. It was Galois, however, who
provided the full explanation by showing which polynomials could and could not
be solved by formulas. He discovered the connection between groups and field
extensions. Galois theory demonstrates the strong interdependence of group and
field theory, and has had far-reaching implications beyond its original purpose.

In this chapter we will prove the Fundamental Theorem of Galois Theory. This
result will be used to establish the insolvability of the quintic and to prove the
Fundamental Theorem of Algebra.

21.1 Field Automorphisms

Our first task is to establish a link between group theory and field theory by
examining automorphisms of fields.

Proposition 21.1. The set of all automorphisms of a field F is a group under
composition of functions.

Proof. 1f o and 7 are automorphisms of E, then so are o7 and o™". The identity
is certainly an automorphism; hence, the set of all automorphisms of a field F is
indeed a group. ]

Proposition 21.2. Let E be a field extension of F. Then the set of all automor-
phisms of E that fix F elementwise is a group; that is, the set of all automorphisms
0:E — Esuchthat 0(«) = a for all @ € F is a group.
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Proof. We need only show that the set of automorphisms of E that fix F element-
wise is a subgroup of the group of all automorphisms of E. Let ¢ and 7 be two
automorphisms of E such that 0(«) = a and 7(a) = « for all & € F. Then
o7(a) = o(a) = @ and 07 () = a. Since the identity fixes every element of E,
the set of automorphisms of E that leave elements of F fixed is a subgroup of the
entire group of automorphisms of E. ]

Let E be a field extension of F. We will denote the full group of automorphisms
of E by Aut(E). We define the Galois group of E over F to be the group of
automorphisms of E that fix F elementwise; that is,

G(E/F)={0 € Aut(E):0(a) =aforall a € F}.

If f(x) is a polynomial in F[x] and E is the splitting field of f(x) over F, then
we define the Galois group of f(x) to be G(E/F).

Example 1. Complex conjugation, defined by ¢ : a + bi — a — bi, is an automor-
phism of the complex numbers. Since

o(a)=0(a+0i)=a-0i=a,

the automorphism defined by complex conjugation must be in G(C/R).
Example 2. Consider the fields @ ¢ Q(+v/5) c Q(\/3,\/5). Then for a,b €

Q(V5),
o(a+bV/3)=a-bV3
is an automorphism of Q(+/3, /5 ) leaving Q(~/5 ) fixed. Similarly,

(a+bV5)=a-bV/5

is an automorphism of Q(1/3,/5) leaving Q@(+/3) fixed. The automorphism
4 = o7 moves both \/3 and \/5. It will soon be clear that {id, o, 7, 4} is the
Galois group of Q(v/3,/5 ) over Q. The following table shows that this group is
isomorphic to Z, x Z,.

‘ id o 1
id|id o T
o|lo id pu T
T |17 W id o
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We may also regard the field Q(1/3,/5 ) as a vector space over Q that has basis
{1,v/3,/5,\/15 }.. It is no coincidence that |G(Q(v/3,v/5)/Q)| = [@(+/3,V/5) :
Q)] =4

Proposition 21.3. Let E be a field extension of F and f(x) be a polynomial in
F[x]. Then any automorphism in G(E/F) defines a permutation of the roots of
f(x) thatlie in E.

Proof. Let

f(x) = ag + a1x + azx* + - + a,x"

and suppose that « € E is a zero of f(x). Then for o € G(E/F),

0=0(0)
=0(f(«))

2
=o(ap+aa+aa”+-+aya”)

=ag+aio(a) + az[o(a)]? + - +a,[o(a)]";
therefore, o () is also a zero of f(x). ]

Let E be an algebraic extension of a field F. Two elements «, 8 € E are
conjugate over F if they have the same minimal polynomial. For example, in the
field Q(v/2 ) the elements \/2 and —/2 are conjugate over @Q since they are both
roots of the irreducible polynomial x* — 2.

A converse of the last proposition exists. The proof follows directly from
Lemma 19.18.

Proposition 21.4. If @ and f3 are conjugate over F, there exists an isomorphism
0 : F(a) » F(f) such that ¢ is the identity when restricted to F.

Theorem 21.5. Let f(x) be a polynomial in F[x] and suppose that E is the split-
ting field for f(x) over F. If f(x) has no repeated roots, then

|G(E/F)| = [E : F].

Proof. The proof is similar to the proof of Theorem 19.19. We will use mathematical
induction on the degree of f(x). If the degree of f(x) is 0 or 1, then E = F and
there is nothing to show. Assume that the result holds for all polynomials of
degree k with 0 < k < n. Let p(x) be an irreducible factor of f(x) of degree r.
Since all of the roots of p(x) are in E, we can choose one of these roots, say «,
so that F c F(a) c E. If B is any other root of p(x), then F c F(f8) c E. By
Lemma 19.18, there exists a unique isomorphism ¢ : F(a) — F(3) for each such 8
that fixes F elementwise. Since E is a splitting field of F(3), there are exactly r such
isomorphisms. We can factor p(x) in F(«) as p(x) = (x — &) p1(x). The degrees
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of p1(x) and g;(x) are both less than r. Since we know that E is the splitting field
of p1(x) over F(a), we can apply the induction hypothesis to conclude that

|G(E/F(a))| = [E: F(a)].
Consequently, there are
[E:F]=[E:F(a)][F() : F]
possible automorphisms of E that fix F, or |G(E/F)| = [E : F]. ]

Corollary 21.6. Let F be a finite field with a finite extension E such that [E : F] = k.
T hen G(E/F) is cyclic.

Proof. Let p be the characteristic of E and F and assume that the orders of E and
F are p™ and p”, respectively. Then nk = m. We can also assume that E is the
splitting field of x?” — x over a subfield of order p. Therefore, E must also be the
splitting field of x?” — x over F. Applying Theorem 21.5, we find that |G(E/F)| = k.

To prove that G(E/F) is cyclic, we must find a generator for G(E/F). Let
0 : E — E be defined by o(«a) = a”". We claim that ¢ is the element in G(E/F)
that we are seeking. We first need to show that ¢ is in Aut(E). If « and § are in E,

o(a+p)=(a+p) =a +p" =a(a)+a(p)

by Lemma 20.3. Also, it is easy to show that o(«f8) = o(a)o(B). Since o is a
nonzero homomorphism of fields, it must be injective. It must also be onto, since
E is a finite field. We know that o must be in G(E/F), since F is the splitting field
of x?" — x over the base field of order p. This means that ¢ leaves every element
in F fixed. Finally, we must show that the order of ¢ is k. By Theorem 21.5, we
know that ¥ (&) = a* = o is the identity of G(E/F). However, ¢" cannot be
the identity for 1 < r < k; otherwise, x?" — x would have p™ roots, which is
impossible. u

Example 3. We can now confirm that the Galois group of Q(1/3,/5) over @ in
Example 2 is indeed isomorphic to Z, x Z,. Certainly the group H = {id, 0,7, u}
is a subgroup of G(Q(~/3, /5 )/Q); however, H must be all of G(Q(~/3,/5)/Q),

since

H| = [@(V3,V/5): Q] =|G(Q(V3,V5)/Q)| = 4.

Example 4. Let us compute the Galois group of

f(x)=x*+x+x*+x+1
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over Q. We know that f(x) is irreducible by Exercise 19 in Chapter 15. Further-
more, since (x —1) f(x) = x° — 1, we can use DeMoivre’s Theorem to determine
that the roots of f(x) are w', wherei=1,...,4and

w = cos(2m/5) + i sin(27/5).

Hence, the splitting field of f(x) must be Q(w). We can define automorphisms
0; of @(w) by 0;(w) = w' for i =1,...,4. It is easy to check that these are indeed
distinct automorphisms in G(Q(w)/Q). Since

[Q(w) : Q] = 1G(Q(w)/Q)]| = 4,

the 0;’s must be all of G(Q(w)/Q). Therefore, G(Q(w)/Q) = Z,4 since w is a
generator for the Galois group.

Separable Extensions

Many of the results that we have just proven depend on the fact that a polynomial
f(x) in F[x] has no repeated roots in its splitting field. It is evident that we need to
know exactly when a polynomial factors into distinct linear factors in its splitting
field. Let E be the splitting field of a polynomial f(x) in F[x]. Suppose that f(x)
factors over E as

£ = (= )" (=0 - ) = [ (- )"

We define the multiplicity of a root «; of f(x) to be #;. A root with multiplicity
1 is called a simple root. Recall that a polynomial f(x) € F[x] of degree n is
separable if it has » distinct roots in its splitting field E. Equivalently, f(x) is
separable if it factors into distinct linear factors over E[x]. An extension E of F isa
separable extension of F if every element in E is the root of a separable polynomial
in F[x]. Also recall that f(x) is separable if and only if gcd(f(x), f'(x)) =1
(Lemma 20.4).

Proposition 21.7. Let f(x) be an irreducible polynomial over F[x]. If the char-
acteristic of F is 0, then f(x) is separable. If the characteristic of F is p and
f(x) # g(x?) for some g(x) in F[x], then f(x) is also separable.

Proof. First assume that charF = 0. Since deg f'(x) < deg f(x) and f(x) is
irreducible, the only way ged(f(x), f'(x)) # Lis if f'(x) is the zero polynomial;
however, this is impossible in a field of characteristic zero. If charF = p, then
f'(x) can be the zero polynomial if every coefficient of f(x) is a multiple of p.
This can happen only if we have a polynomial of the form f(x) = a¢ + a;x? +
A x4 a,x"?, [ |
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Certainly extensions of a field F of the form F(«) are some of the easiest to
study and understand. Given a field extension E of F, the obvious question to ask
is when it is possible to find an element « € E such that E = F(«). In this case, a
is called a primitive element. We already know that primitive elements exist for
certain extensions. For example,

Q(V3,V5) =Q(vV3+5)

and

Q(V/5,V5i) = Q(V/51).

Corollary 20.9 tells us that there exists a primitive element for any finite extension
of a finite field. The next theorem tells us that we can often find a primitive
element.

Theorem 21.8 (Primitive Element Theorem). Let E be a finite separable extension
of a field F. Then there exists an « € E such that E = F(«).

Proof. We already know that there is no problem if F is a finite field. Suppose that
E is a finite extension of an infinite field. We will prove the result for F(«, 8). The
general case easily follows when we use mathematical induction. Let f(x) and
g(x) be the minimal polynomials of « and f, respectively. Let K be the field in
which both f(x) and g(x) split. Suppose that f(x) has zeros & = a3, ..., a, in
K and g(x) has zeros = f31, ..., Bm in K. All of these zeros have multiplicity 1,
since E is separable over F. Since F is infinite, we can find an a in F such that

xdi — &
P-Bi
for all i and j with j # 1. Therefore, a(ff — ;) # a; — «. Let y = a + af8. Then

y=a+ap#*a;+ap;

hence, y — af; # a; for all i, j with j # 1. Define h(x) € F(y)[x] by h(x) =
f(y—ax). Then h(p) = f(«) = 0. However, h(3;) # 0 for j 1. Hence, h(x) and
g(x) have a single common factor in F(y)[x]; that is, the irreducible polynomial
of 8 over F(y) must be linear, since § is the only zero common to both g(x) and
h(x).So e F(y)and a =y — af is in F(y). Hence, F(a, ) = F(y). ]

21.2 The Fundamental Theorem

The goal of this section is to prove the Fundamental Theorem of Galois Theory.
This theorem explains the connection between the subgroups of G(E/F) and the
intermediate fields between E and F.
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Proposition 21.9. Let {0; : i € I} be a collection of automorphisms of a field F.
Then
Fisy={a€F:0;(a)=aforallo;}

is a subfield of F.
Proof. Leto;(a) = aand 0;(b) = b. Then
ogi(atb)=0;(a)to;(b)=axb
and
g;(ab) = o;(a)o;(b) = ab.

Ifa+0,theno;(a™') =[0;(a)]™! = a™". Finally, 6;(0) = 0 and 0;(1) = 1 since o;
is an automorphism. [

Corollary 21.10. Let F be a field and let G be a subgroup of Aut(F). Then
Fo={aeF:0(a)=aforalloe G}

is a subfield of F.

The subfield Fy,,; of F is called the fixed field of {o; }. The field fixed for a
subgroup G of Aut(F) will be denoted by Fg.

Examples. Let o : Q(v/3,1/5) - Q(+/3,/5) be the automorphism that maps
V3 to —v/3. Then Q)(\/g) is the subfield of Q)(\/g, \/§) left fixed by o.

Proposition 21.11. Let E be a splitting field over F of a separable polynomial.
Then EG(E/F) =F.

Proof. Let G = G(E/F). Clearly, F c Eg c E. Also, E must be a splitting field of
Eg and G(E/F) = G(E/Eg). By Theorem 21.5,

|G| =[E: Eg] =[E:F].
Therefore, [Eg : F] = 1. Consequently, Eg = F. [

A large number of mathematicians first learned Galois theory from Emil
Artin’'s monograph on the subject [1]. The very clever proof of the following
lemma is due to Artin.

Lemma 21.12. Let G be a finite group of automorphisms of E and let F = Eg.
Then [E : F] < |G|
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Proof. Let |G| = n. We must show that any set of n + 1 elements a;, ..., @41 in E
is linearly dependent over F; that is, we need to find elements a; € F, not all zero,
such that

a0y + ary + -+ a1y = 0.

Suppose that 01 = id, 03, . .., 0, are the automorphisms in G. The homogeneous
system of linear equations

o1(a)xy + o1 (az)xz + -+ + 01 (A1) Xns1 = 0

o2(o1)x1 + 02 (@2)x2 + -+ + 02(Apa1) X1 = 0

on(ar)x1 + on(az)xy + -+ 0y (Ay41)Xp41 = 0

has more equations than unknowns. From linear algebra we know that this system
has a nontrivial solution, say x; = a; for i =1,2,...,n + L Since 0 is the identity,
the first equation translates to

a0 + ao, + o+ Ay = 0.

The problem is that some of the a;’s may be in E but not in F. We must show that
this is impossible.

Suppose that at least one of the a;’s is in E but not in F. By rearranging the
a;’s we may assume that a; is nonzero. Since any nonzero multiple of a solution
is also a solution, we can also assume that a; = 1. Of all possible solutions fitting
this description, we choose the one with the smallest number of nonzero terms.
Again, by rearranging oy, ..., &, if necessary, we can assume that a, is in E
but not in F. Since F is the subfield of E that is fixed elementwise by G, there
exists a 0; in G such that 0;(a,) # a,. Applying o; to each equation in the system,
we end up with the same homogeneous system, since G is a group. Therefore,
x1=0i(a1) =1, %, = 0;(a2), ..., Xns1 = 0i(ay+1) is also a solution of the original
system. We know that a linear combination of two solutions of a homogeneous
system is also a solution; consequently,

X1:1—1:0

Xy =4z — Ui(az)

Xn+l = Ane1 — Ui(an+1)

must be another solution of the system. This is a nontrivial solution because
oi(ay) # a,, and has fewer nonzero entries than our original solution. This is a



THE FUNDAMENTAL THEOREM 335

contradiction, since the number of nonzero solutions to our original solution was
assumed to be minimal. We can therefore conclude thatg; =---=a,,;=0. =

Let E be an algebraic extension of F. If every irreducible polynomial in F[x]
with a root in E has all of its roots in E, then E is called a normal extension of F;
that is, every irreducible polynomial in F[x] containing a root in E is the product
of linear factors in E[x].

Theorem 21.13. Let E be a field extension of F. Then the following statements are
equivalent.

1. E is a finite, normal, separable extension of F.
2. E is a splitting field over F of a separable polynomial.
3. F = Eg for some finite group of automorphisms of E.

Proof. (1) = (2). Let E be a finite, normal, separable extension of F. By the
Primitive Element Theorem, we can find an « in E such that E = F(«). Let f(x)
be the minimal polynomial of o over F. The field E must contain all of the roots
of f(x) since it is a normal extension F; hence, E is a splitting field for f(x).

(2) = (3). Let E be the splitting field over F of a separable polynomial. By
Proposition 21.11, Eg(g/r) = F. Since |G(E/F)| = [E : F], this is a finite group.

(3) = (1). Let F = E¢ for some finite group of automorphisms G of E. Since
[E : F] < |G|, E is a finite extension of F. To show that E is a finite, normal
extension of F, let f(x) € F[x] be an irreducible monic polynomial that has a
root « in E. We must show that f(x) is the product of distinct linear factors in
E[x]. By Proposition 21.3, automorphisms in G permute the roots of f(x) lying
in E. Hence, if we let G act on «, we can obtain distinct roots o; = &, &3, ..., &,
in E. Let g(x) = 17, (x — «;). Then g(x) is separable over F and g(«) = 0. Any
automorphism ¢ in G permutes the factors of g(x) since it permutes these roots;
hence, when o acts on g(x), it must fix the coeflicients of g(x). Therefore, the
coefficients of g(x) must be in F. Since degg(x) < deg f(x) and f(x) is the
minimal polynomial of o, f(x) = g(x). ]

Corollary 21.14. Let K be a field extension of F such that F = K for some finite
group of automorphisms G of K. Then G = G(K/F).

Proof. Since F = Kg, G is a subgroup of G(K/F). Hence,
[K:F]<|G|<|G(K/F)|=[K:F].
It follows that G = G(K/F), since they must have the same order. [ ]

Before we determine the exact correspondence between field extensions and
automorphisms of fields, let us return to a familiar example.
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{id, o, 7, u} Q(V3,\/5)
{id,o}  {id, 7}  {id,u} Q(v3) QK\5) QW15)
{id} Q

Figure 21.1. G(Q(\/3,1/5)/Q)

Example 6. In Example 2 we examined the automorphisms of Q(+/3, \/5 ) fixing
Q. Figure 21.1 compares the lattice of field extensions of ) with the lattice of
subgroups of G(Q(v/3,v/5)/Q). The Fundamental Theorem of Galois Theory
tells us what the relationship is between the two lattices.

We are now ready to state and prove the Fundamental Theorem of Galois
Theory.

Theorem 21.15. (Fundamental Theorem of Galois Theory) Let F be a finite field

or a field of characteristic zero. If E is a finite normal extension of F with Galois

group G(E/F), then the following statements are true.

1. The map K — G(E/K) is a bijection of subfields K of E containing F with the
subgroups of G(E/F).

2. IfFc K c E, then

[E:K]=|G(E/K)|and [K: F] = [G(E/F) : G(E/K)].

3. FcKcLcEifandonlyif{id} c G(E/L) c G(E/K) c G(E/F).
4. K is a normal extension of F if and only if G(E/K) is a normal subgroup of
G(E/F). In this case

G(K/F) = G(E/F)/G(E/K).

Proof. (1) Suppose that G(E/K) = G(E/L) = G. Both K and L are fixed fields of
G; hence, K = L and the map defined by K — G(E/K) is one-to-one. To show
that the map is onto, let G be a subgroup of G(E/F) and K be the field fixed by G.
Then F c K c E; consequently, E is a normal extension of K. Thus, G(E/K) = G
and the map K — G(E/K) is a bijection.
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(2) By Theorem 21.5, |G(E/K)| = [E : K]; therefore,

|G(E/F)| = [G(E/F): G(E/K)]-|G(E/K)|=[E:F]=[E:K][K:F].
Thus, [K : F] = [G(E/F) : G(E/K)].

(3) Statement (3) is illustrated in Figure 21.2. We leave the proof of this property

as an exercise.

E —— {id)

L — G(E/L)

K — G(E/K)

F G(E/F)

Figure 21.2. Subgroups of G(E/F) and subfields of E

(4) This part takes a little more work. Let K be a normal extension of F. If
o isin G(E/F) and 7 is in G(E/K), we need to show that 0~'7¢ is in G(E/K);
that is, we need to show that 6 7'70(a) = « for all a € K. Suppose that f(x) is
the minimal polynomial of « over F. Then ¢(«) is also a root of f(x) lying in K,
since K is a normal extension of F. Hence, 7(0(a)) = o(a) or 0770 (a) = a.

Conversely, let G(E/K) be a normal subgroup of G(E/F). We need to show
that F = Kg(k/F). Let 7 € G(E/K). For all 0 € G(E/F) there exists a 7 € G(E/K)
such that 7o = 7. Consequently, for all « € K

7(0(a)) = o(7(a)) = o(a);

hence, o(a) must be in the fixed field of G(E/K). Let 0 be the restriction of ¢

to K. Then ¢ is an automorphism of K fixing F, since o(«) € K for all a € K;

hence, ¢ € G(K/F). Next, we will show that the fixed field of G(K/F) is F. Let f8

be an element in K that is fixed by all automorphisms in G(K/F). In particular,

o (B) = B forall 0 € G(E/F). Therefore,  belongs to the fixed field F of G(E/F).
Finally, we must show that when K is a normal extension of F,

G(K/F) = G(E/F)/G(E/K).
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For o € G(E/F), let ok be the automorphism of K obtained by restricting o to K.
Since K is a normal extension, the argument in the preceding paragraph shows
that ox € G(K/F). Consequently, we have amap ¢ : G(E/F) - G(K/F) defined
by o — 0. This map is a group homomorphism since

¢(07) = (07)k = ox 7k = $(0)$(7).
The kernel of ¢ is G(E/K). By (2),
IG(E/F)|/IG(E/K)| = [K: F] = |G(K/F)|.

Hence, the image of ¢ is G(K/F) and ¢ is onto. Applying the First [somorphism
Theorem, we have
G(K/F) = G(E/F)/G(E/K). ]

Example 7. In this example we will illustrate the Fundamental Theorem of Galois
Theory by determining the lattice of subgroups of the Galois group of f(x) = x*-2.
We will compare this lattice to the lattice of field extensions of ) that are contained
in the splitting field of x* — 2. The splitting field of f(x) is Q(~¥/2, i). To see this,
notice that f(x) factors as (x* + v/2)(x? - \/2); hence, the roots of f(x) are
+v/2 and +¥/2i. We first adjoin the root 2 to @ and then adjoin the root i of
x% +1to Q(v/2). The splitting field of f(x) is then Q(/2)(i) = Q(/2, i).

Since [Q(¥/2) : Q] = 4 and i is not in Q(~/2), it must be the case that
[Q(~/2,i): Q(¥/2)] = 2. Hence, [Q(~/2, i) : Q] = 8. The set

(1,2, (V2)2%,(V2)%,1,iv/2,i(¥2)%i(V2)*}

is a basis of Q(/2, i) over Q. The lattice of field extensions of Q contained in
@({’/f, i) is illustrated in Figure 21.3(a).

The Galois group G of f(x) must be of order 8. Let ¢ be the automorphism
defined by ¢(+/2) = v/2 and ¢(i) = i, and 7 be the automorphism defined by
complex conjugation; that is, 7(i) = —i. Then G has an element of order 4 and
an element of order 2. It is easy to verify by direct computation that the elements
of G are {id, 0,0%, 0°,7,07,0%7,0°7} and that the relations 7* = id, 0* = id,
and 707 = 0! are satisfied; hence, G must be isomorphic to D,. The lattice of
subgroups of G is illustrated in Figure 21.3(b).

Historical Note

Solutions for the cubic and quartic equations were discovered in the 1500s. Attempts to
find solutions for the quintic equations puzzled some of history’s best mathematicians. In
1798, P. Ruffini submitted a paper that claimed no such solution could be found; however,
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Q(v2)

e BN

Q(V2) Q(V2i) Q(V2.i)  Q(1+i)V2) Q1-i)V2)

Q(\V2) Q(i) Q(V2i)

\ /

Q (a)
D,
/ \
{id,az,r, 021} {id, o, 02,03} {id,az,ar, 031}
{id, 1} {id, 0’1} {id,c*} {id, o1} {id, 0’1}
{id} (b)

Figure 21.3. Galois group of x* - 2

the paper was not well received. In 1826, Niels Henrik Abel (1802-1829) finally offered the
first correct proof that quintics are not always solvable by radicals.

Abel inspired the work of Evariste Galois. Born in 1811, Galois began to display ex-
traordinary mathematical talent at the age of 14. He applied for entrance to the Ecole
Polytechnique several times; however, he had great difficulty meeting the formal entrance
requirements, and the examiners failed to recognize his mathematical genius. He was
finally accepted at the Ecole Normale in 1829.

Galois worked to develop a theory of solvability for polynomials. In 1829, at the age of
17, Galois presented two papers on the solution of algebraic equations to the Académie des
Sciences de Paris. These papers were sent to Cauchy, who subsequently lost them. A third
paper was submitted to Fourier, who died before he could read the paper. Another paper
was presented, but was not published until 1846.

Galois’s democratic sympathies led him into the Revolution of 1830. He was expelled
from school and sent to prison for his part in the turmoil. After his release in 1832, he was
drawn into a duel over a love affair. Certain that he would be killed, he spent the evening
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before his death outlining his work and his basic ideas for research in a long letter to his
friend Chevalier. He was indeed dead the next day, at the age of 21.

21.3 Applications

Solvability by Radicals

Throughout this section we shall assume that all fields have characteristic zero to
ensure that irreducible polynomials do not have multiple roots. The immediate
goal of this section is to determine when the roots of a polynomial f(x) can
be computed in a finite number of operations on the coefficients of f(x). The
allowable operations are addition, subtraction, multiplication, division, and the
extraction of nth roots. Certainly the solution to the quadratic equation, ax?* +
bx + ¢ = 0, illustrates this process:

v -b+Vb?-4ac

2a

The only one of these operations that might demand a larger field is the taking of
nth roots. We are led to the following definition.

An extension field E of a field F is an extension by radicals if there are elements
a1, ..., a, € K and positive integers n, . .., n, such that

E=F(a,...,a;),

where ;" € F and
"
o' € Flag,..., 1)

fori=2,...,r. A polynomial f(x) is solvable by radicals over F if the splitting
field K of f(x) over F is contained in an extension of F by radicals. Our goal is to
arrive at criteria that will tell us whether or not a polynomial f(x) is solvable by
radicals by examining the Galois group f(x).

The easiest polynomial to solve by radicals is one of the form x" — a. As we
discussed in Chapter 3, the roots of x” — 1 are called the nth roots of unity. These
roots are a finite subgroup of the splitting field of x” — 1. By Theorem 20.7, the
nth roots of unity form a cyclic group. Any generator of this group is called a
primitive nth root of unity.

Example 8. The polynomial x” —1 is solvable by radicals over Q. The roots of
this polynomial are 1, w, w?, ..., 0"!, where

(271) .. (271)
w=cos|— |+isin|—]).
n n

The splitting field of x" — 1 over Q is Q(w).
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Recall that a subnormal series of a group G is a finite sequence of subgroups
G=H,,DH"_13~~-DH13H0={€},

where H; is normal in H;,;. A subnormal series is a composition series if all the
factor groups are simple; that is, if none of the factor groups of the series contains
a normal subgroup. A group G is solvable if it has a composition series { H; } such
that all of the factor groups H;,;/H; are abelian. For example, if we examine the
series {id} c A; c S3, we see that Aj; is solvable. On the other hand, S5 is not
solvable, by Theorem 9.8.

Lemma 21.16. Let F be a field of characteristic zero and E be the splitting field of
x" — a over F with a € F. Then G(E/F) is a solvable group.

Proof. First suppose that F contains all of its nth roots of unity. The roots of

x" - aare V/a,w/a,...,w" ' /a, where w is a primitive nth root of unity. If
( is one of these roots, then distinct roots of x” — 1 are {, w(,...,w" ', and

E = F({). Since G(E/F) permutes the roots x” — 1, the elements in G(E/F) must
be determined by their action on these roots. Let ¢ and 7 be in G(E/F) and
suppose that 0({) = w'{ and 7({) = w/{. If F contains the roots of unity, then

o1({) = (') = 0 0(0) = 07 = 0'7() = (') = 10(0).

Therefore, 07 = 70 and G(E/F) is abelian, and G(E/F) is solvable.

Suppose that F does not contain a primitive nth root of unity. Let w be a
generator of the cyclic group of the nth roots of unity. Let « be a zero of x” — a.
Since « and wa are both in the splitting field of x” — a, w = (wa)/« is also in
E.Let K = F(w). Then F c K c E. Since K is the splitting field of x” — 1, K is a
normal extension of F. Any automorphism ¢ in G(F(w)/F) is determined by
o(w). It must be the case that o(w) = w’ for some integer i since all of the zeros
of x" — 1 are powers of w. If 7(w) = w’ is in G(F(w)/F), then

07(0) = 0(w) = [0(0)} = 0 = [1()]' = (0') = T0(w).

Therefore, G(F(w)/F) is abelian. By the Fundamental Theorem of Galois Theory
the series
{id} c G(E/F(w)) c G(E/F)

is a normal series. Since G(E/F(w)) and
G(E/F)/|G(E[F(w)) = G(F(w)/F)

are both abelian, G(E/F) is solvable. ]
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Lemma 21.17. Let F be a field of characteristic zero and let E be a radical extension
of F. Then there exists a normal radical extension K of F that contains E.

Proof. Since E is a radical extension of F, there exist elements a, ..., a, € K and
positive integers n, .. ., n, such that

E=F(ar,...,a;),

where o/ € F and
af' € Flag,..., i)

fori=2,...,r. Let f(x) = fi(x)---f;(x), where f; is the minimal polynomial
of a; over F, and let K be the splitting field of K over F. Every root of f(x) in
K is of the form o («;), where 0 € G(K/F). Therefore, for any 0 € G(K/F), we
have [o(a;)]™ € F and [0(a;)]" € F(ay,...,a;—1) fori = 2,...,r. Hence, if
G(K/F) = {01 = id, 02,..., 0}, then K = F(01(«;)) is a radical extension of
F. ]

We will now prove the main theorem about solvability by radicals.
Theorem 21.18. Let f(x) be in F[x], where charF = 0. If f(x) is solvable by
radicals, then the Galois group of f(x) over F is solvable.

Proof. Let K be a splitting field of f(x) over F. Since f(x) is solvable, there
exists an extension E of radicals F = F, c F, c ---F, = E. Since F; is normal
over F;_;, we know by Lemma 21.17 that E is a normal extension of each F;. By
the Fundamental Theorem of Galois Theory, G(E/F;) is a normal subgroup of
G(E/F;_1). Therefore, we have a subnormal series of subgroups of G(E/F):

{id} ¢ G(E/Fy_1) ¢ - ¢ G(E/F,) ¢ G(E/F).
Again by the Fundamental Theorem of Galois Theory, we know that
G(E/Fi-1)/|G(E[F;) = G(Fi/Fi-1).
By Lemma 21.16, G(F;/F;_1) is solvable; hence, G(E/F) is also solvable. ]

The converse of Theorem 21.18 is also true. For a proof, see any of the references
at the end of this chapter.

Insolvability of the Quintic

We are now in a position to find a fifth-degree polynomial that is not solvable
by radicals. We merely need to find a polynomial whose Galois group is Ss. We
begin by proving a lemma.
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-100

=150

Figure 21.4. The graph of f(x) = x° - 6x> - 27x -3

Lemma 21.19. Any subgroup of S, that contains a transposition and a cycle of
length n must be all of S,,.

Proof. Let G be a subgroup of S, that contains a transposition ¢ and a cycle 7 of
length n. We may assume that ¢ = (12) and 7 = (12...n). Since (12)(1...n) =
(2...n)and (2...n)%(1,2)(2...n)7F = (1k), we can obtain all the transposi-
tions of the form (1, # + 1 — k). However, these transpositions generate all trans-
positions in S, since (1j)(1i)(1j) = (ij). The transpositions generate S,,. ]

Example 9. We will show that f(x) = x° — 6x — 27x — 3 € Q[x] is not solvable.
We claim that the Galois group of f(x) over @ is Ss. By Eisenstein’s Criterion,
f(x) is irreducible and, therefore, must be separable. The derivative of f(x) is
f'(x) = 5x* —18x2 — 27; hence, setting f'(x) = 0 and solving, we find that the
only real roots of f'(x) are

6V6+9

X == .
5

Therefore, f(x) can have at most one maximum and one minimum. It is easy
to show that f(x) changes sign between —3 and -2, between -2 and 0, and once
again between 0 and 4 (Figure 21.4). Therefore, f(x) has exactly three distinct
real roots. The remaining two roots of f(x) must be complex conjugates. Let K
be the splitting field of f(x). Since f(x) has five distinct roots in K and every
automorphism of K fixing Q is determined by the way it permutes the roots of
f(x), we know that G(K/Q) is a subgroup of Ss. Since f is irreducible, there
is an element in ¢ € G(K/Q) such that o(a) = b for two roots a and b of f(x).
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The automorphism of C that takes a + bi — a — bi leaves the real roots fixed and
interchanges the complex roots; consequently, G(K/Q) c Ss. By Lemma 21.19,
Ss is generated by a transposition and an element of order 5; therefore, G(K/F)
must be all of Ss. By Theorem 9.8, Ss is not solvable. Consequently, f(x) cannot
be solved by radicals.

The Fundamental Theorem of Algebra

It seems fitting that the last theorem that we will state and prove is the Fundamen-
tal Theorem of Algebra. This theorem was first proven by Gauss in his doctoral
thesis. Prior to Gauss’s proof, mathematicians suspected that there might exist
polynomials over the real and complex numbers having no solutions. The Fun-
damental Theorem of Algebra states that every polynomial over the complex
numbers factors into distinct linear factors.

Theorem 21.20. (Fundamental Theorem of Algebra) The field of complex num-
bers is algebraically closed; that is, every polynomial in C[x] has a root in C.

For our proof we shall assume two facts from calculus. We need the results
that every polynomial of odd degree over R has a real root and that every positive
real number has a square root.

Proof. Suppose that E is a proper finite field extension of the complex numbers.
Since any finite extension of a field of characteristic zero is a simple extension, there
exists an « € E such that E = C(«) with a the root of an irreducible polynomial
f(x) in C[x]. The splitting field L of f(x) is a finite normal separable extension
of C that contains E. We must show that it is impossible for L to be a proper
extension of C.

Suppose that L is a proper extension of C. Since L is the splitting field of
f(x)(x2+1) over R, L is a finite normal separable extension of R. Let K be the fixed
field of a Sylow 2-subgroup G of G(L/R). Then L o K o Rand |G(L/K)| = [L : K].
Since [L: R] = [L : K][K : R], we know that [K : R] must be odd. Consequently,
K = R(pB) with  having a minimal polynomial f(x) of odd degree. Therefore,
K=R

We now know that G(L/R) must be a 2-group. It follows that G(L/C) is a
2-group. We have assumed that L # C; therefore, |G(L/C)| > 2. By the first Sylow
Theorem and the Fundamental Theorem of Galois Theory, there exists a subgroup
G of G(L/C) of index 2 and a field E fixed elementwise by G. Then [E : C] = 2
and there exists an element y € E with minimal polynomial x* + bx + ¢ in C[x].
This polynomial has roots (b + /b2 — 4c ) /2 that are in C, since b? — 4c is in C.
This is impossible; hence, L = C. [ ]

Although our proof was strictly algebraic, we were forced to rely on results
from calculus. It is necessary to assume the completeness axiom from analysis to
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show that every polynomial of odd degree has a real root and that every positive
real number has a square root. It seems that there is no possible way to avoid this
difficulty and formulate a purely algebraic argument. It is somewhat amazing that
there are several elegant proofs of the Fundamental Theorem of Algebra that use
complex analysis. It is also interesting to note that we can obtain a proof of such
an important theorem from two very different fields of mathematics.

Exercises

1. Compute each of the following Galois groups. Which of these field extensions are
normal field extensions? If the extension is not normal, find a normal extension of  in
which the extension field is contained.

@) G(Q(v/30)/Q) (b) G(Q(+/5)/Q)
© G(Q(vV2,v3,V/5)/Q) @) G(Q(V2,v2,i)/Q)

(©) G(Q(V6,1)/Q)
2. Determine the separability of each of the following polynomials.
(@) x> +2x* —x—-2overQ (b) x*+2x* +1over Q
(c) x*+x*+1overZ; (d) x*+x*>+1overZ,
3. Give the order and describe a generator of the Galois group of GF(729) over GF(9).
4. Determine the Galois groups of each of the following polynomials in Q[x]; hence,
determine the solvability by radicals of each of the polynomials.

(@) x°-12x*+2 (b) x° —4x* +2x+2
(c) x*-5 (d x*-x*-6

(e) x> +1 ) (x*-2)(x*+2)
(g) x¥ -1 (h) x%+1

(i) x*-3x*-10
5. Find a primitive element in the splitting field of each of the following polynomials in

Q[x].
(@) x*-1 (b) x*-8x2+15
(c) x*-2x*-15 (d) x*-2

6. Prove that the Galois group of an irreducible quadratic polynomial is isomorphic to Z>.

7. Prove that the Galois group of an irreducible cubic polynomial is isomorphic to S3 or
Z3.

8. Let F c K c E be fields. If E is a normal extension of F, show that E must also be a
normal extension of K.

9. Let G be the Galois group of a polynomial of degree n. Prove that |G| divides n!.

10. Let F c E. If f(x) is solvable over F, show that f(x) is also solvable over E.

11. Construct a polynomial f(x) in Q[x] of degree 7 that is not solvable by
radicals.

12. Let p be prime. Prove that there exists a polynomial f(x) € Q[x] of degree p with
Galois group isomorphic to S,. Conclude that for each prime p with p > 5 there exists a
polynomial of degree p that is not solvable by radicals.
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13. Let p be a prime and Z,(¢t) be the field of rational functions over Z,. Prove that
f(x) = xP - tisan irreducible polynomial in Z, () [x]. Show that f(x) is not separable.

14. Let E be an extension field of F. Suppose that K and L are two intermediate fields. If
there exists an element 0 € G(E/F) such that 0(K) = L, then K and L are said to be
conjugate fields. Prove that K and L are conjugate if and only if G(E/K) and G(E/L)
are conjugate subgroups of G(E/F).

15. Let o € Aut(R). If a is a positive real number, show that o(a) > 0.

16. Let K be the splitting field of x> + x* + 1 € Z,[x]. Prove or disprove that K is an
extension by radicals.

17. Let F beafield such that char F # 2. Prove that the splitting field of f(x) = ax®+bx+c
is F(r/a ), where & = b* — 4ac.

18. Prove or disprove: Two different subgroups of a Galois group will have different fixed
fields.

19. Let K be the splitting field of a polynomial over F. If E is a field extension of F
contained in K and [E : F] = 2, then E is the splitting field of some polynomial in F[x].

20. We know that the cyclotomic polynomial

xP -1

D, (x) = S A LA |

x -1

is irreducible over @ for every prime p. Let w be a zero of @, (x), and consider the field

Q).

(a) Show that w, w?, ..., w?™" are distinct zeros of @, (x), and conclude that they are
all the zeros of @, (x).

(b) Show that G(Q(w)/Q) is abelian of order p — 1.
(c) Show that the fixed field of G(Q(w)/Q) is Q.

21. Let F be a finite field or a field of characteristic zero. Let E be a finite normal extension
of F with Galois group G(E/F). Prove that F ¢ K c L c E if and only if {id} c
G(E/L) c G(E/K) c G(E/F).

22. Let F be a field of characteristic zero and let f(x) € F[x] be a separable polynomial
of degree n. If E is the splitting field of f(x), let as, ..., @, be the roots of f(x) in E.
Let A = [1;,;(ai — @;). We define the discriminant of f(x) to be A2
(a) If f(x) = ax® + bx + ¢, show that A> = b* — 4ac.

(b) If f(x) = x* + px + g, show that A> = —4p> — 274"

(c) Prove that A% isin F.

(d) Ifo € G(E/F) is a transposition of two roots of f(x), show that 6(4) = - A.
(e) If o € G(E/F) is an even permutation of the roots of f(x), show that ¢(4) = A.
(f) Prove that G(E/F) is isomorphic to a subgroup of A, if and only if A € F.

(g) Determine the Galois groups of x*+2x—4and x® +x - 3.
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Hints and Solutions

Chapter o. Preliminaries
1. (a) {2}. (b) {5}.
2 @ {(@1), (0:2), (@3), (b.1), (5,2), (5,3), (6.1), (6:2), (e.3) .
(d) @.
6. If x e AU(BNC), theneitherx € Aorx e BNnC=x e AUBandAuUC = x ¢
(AuB)Nn(AuC)=AuU(BnC)c(AuB)n(AuC).
Conversely, x € (AUB)N(AUC) = x € AuBand AUC = x € Aor x isinboth Band C =
x € AU(BNC) = (AuB)N(AUC) c AU(BNC). Hence, AU(BNC) = (AuB)n(AUC).
10. (AnB)U(ANB)U(B~NA) = (AnB)U(ANnB')uU(BNA") =[An(BUB’)]u(BnA’) =
Au(BnA")=(AuB)n(AuA’)=AUB.
14. AN(BUC) = An(BUC)' = (AnA)n(B'nC") = (AnB")n(AnC’) = (ANB)N(A~C).
17. (a) Not a map. f(2/3) is undefined.
(c) Notamap. f(1/2) =3/4and f(2/4) = 3/8.
18. (a) One-to-one but not onto. f(R) = {x e R:x > 0}.
(c) Neither one-to-one nor onto.
20. (@) f(n)=n+1
22. (a) Letx, y € A. Then g(f(x)) = (g0 f)(x) = (92 /)(¥) = 9(f(»)) = f(x) =
f(y) = x =y,s0 go f is one-to-one.
(b) Letc € C,thenc = (go f)(x) = g(f(x)) for some x € A. Since f(x) € B, g is onto.
23. fN(x) = (x+1)/(x-1).
24. (a)Lety € f(AjUA;) = thereexistsan x € AjUA; suchthat f(x) =y = y e f(A))
or f(A2) = ye f(A) U f(A2) = f(A1UAs) € f(A) U f(A2).
Conversely, let y € f(A1) U f(A2) = y € f(A1) or f(A;) = there exists an x € A,
or there exists an x € A such that f(x) = y = there exists an x € A; U A; such that
f(x)=y= f(A1) U f(A;) c f(A1UA;). Hence, f(A1UA;) = f(A1) U f(A2).
25. (a) Not an equivalence relation. Fails to be symmetric.
(c) Not an equivalence relation. Fails to be transitive.
28. Let X = NU{1/2} and define x ~ yif x + y € N.

Chapter 1. The Integers

1 S(1):[1(1+1)(2(1) +1)]/6 = 1 = 1% is true. Assume S(k) : 1* + 2% + - + k* = [k(k +
1)(2k+1)]/6is true. Then 12 +2% + -+ k* + (k+1)* = [k(k+1)(2k +1)]/6 + (k+1)* =
[(k+D)((k+1)+1)(2(k +1) +1)]/6, so S(k + 1) is true. Thus S(n) is true for all
positive integers 7.

3. S(4) : 4! = 24 > 16 = 2% is true. Assume S(k) : k! > 2* is true. Then (k +1)! =
ki(k+1) > 2% -2 = 2K 50 S(k +1) is true. Thus S(n) is true for all positive integers #.
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8. Look at the proof in Example 3.

1. S(0): (1+x)°~1=02>0=0-xis true. Assume S(k) : (1+x)* —1> kx is true.
Then (1+x) ! 1= (1+x)(1+x) 1= Q+x) +xQ+x) 12 kx+x(1+x) >
kx +x = (k +1)x,s0 S(k +1) is true. Thus S(#n) is true for all positive integers .

15. (a) (14)14 + (-5)39 =L
(c) (3709)1739 + (~650)9923 = 1.

(e) (881)23771 + (~1050)19945 = 1.

17. (b) Use mathematical induction. (c) Show that fi =1, f, =1, and fu42 = fus1 + fu. (d)
Use part (c). (e) Use part (b) and Problem 16.

19. Use the Fundamental Theorem of Arithmetic.

23. LetS={seN:a|s b|s}. S+ @, since|ab| € S. By the Principle of Well-Ordering,
S contains a least element m. To show uniqueness, suppose that a | n and b | n for
some 7 € N. By the division algorithm, there exist unique integers q and r such that
n=mq+r,where0<r<m.a|mb|malnb|n=alr,b|r=r=0Dbythe
minimality of m. Therefore, m | n.

27. Since gcd(a, b) = 1, there exist integers r and s such that ar + bs =1 = acr + bes = c.
Sincea|aanda|bc, a]c.

29. Let p = pip2---px + 1, where p1 = 2, p» = 3,..., pi are the first k primes. Show that p
is prime.

Chapter 2. Groups

1. (@){....,-4,310,...}.(c) {...,-8,18,44,...}. (¢) {...,-1,5,11,...}.
2. (a) Not a group. (c) A group.

6. : ‘ 1 5 7 1

1|1 5 7 11
5(5 1 11 7
717 11 1 5
mjmnm 7 5 1

8. Pick two matrices. Almost any pair will work.
15. There is a group of order 6 that is nonabelian.

16. Look at the symmetry group of an equilateral triangle or a square.

17. There are actually five different groups of order 8.

18. Let
( 1 2 -« n )
o=
a 4z -+ Qp

be in S,. All of the a;’s must be distinct. There are n ways to choose a1, n — 1 ways to

choose ay, . .., 2 ways to choose a,-1, and only one way to choose a,. Therefore, we can

form o in n(n —1)--2-1= n! ways.
24. (aba™)" = (aba™")(aba™)--(aba™) = ab(aa " )b(aa™)b---(aa)ba™ = ab"a™".
29. abab = (ab)® = e = a’b* = aabb = ba = ab.
33. Hy={id}, H, = {id, p1, p2}, Hs = {id, }, Hs = {id, 2}, Hs = {id, s}, Ss.
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39. id =1=1+0v/2, (a+b\/2)(c+d/2) = (ac+2bd)+(ad+bc)\/2,and (a+b+/2) ™" =
a/(a*-2b*) - b\/2/(a* - 2b%).
44. Not a subgroup. Look at Ss.

47. a*b=ba=b=a’b = a’ba = ab = a’ba = ba.

Chapter 3. Cyclic Groups

1. (a) False. (c) False. (e) True.

2. (a) 12. (c) Infinite. (e) 10.

3. @72 =1{...,-7,0,7,14,...}. (b) {0,3,6,9,12,15,18, 21}.
(c) {0},{0,6},{0,4,8},{0,3,6,9},{0,2,4,6,8,10}.
@ {1,3,7,9}. ) {1,-1,4,~i}.

@ ((1) ‘1)),(_01 _01)(? _ol)’(—ol (1))
© ((1) ?)(i _ol)(j (1))

10. (a)0,1,-1. (b)1,-1.

1. 1, 2,3, 4, 6, 8,12, 24.

15. (a) 37 — 3. (c) 43 —18i. (e) i.

16. (a) V3 +i. (c) -3.

17. (a) V2 cis(77/4). (c) 2v/2 cis(7/4). (e) 3 cis(37/2).

(@) (1-1)/2. (c)16(i —\/3). (e) —1/4.

22. (a) 292. (¢) 1523.

27. () (M) =1

31. The identity element in any group has finite order. Let g, h € G have orders m and n,

respectively. Since (g7')™ = e and (gh)™" = e, the elements of finite order in G form a
subgroup of G.

o]

15.

37. If g is an element distinct from the identity in G, g must generate G; otherwise, (g) is
a nontrivial proper subgroup of G.

Chapter 4. Permutation Groups

(a) (12453). (c) (13)(25).

(a) (135)(24). (c) (14)(23). (e) (1324). (g) (134)(25). (n) (17352).
(a) (16)(15)(13)(14). (c) (16)(14)(12).

(a1, an, an-1,...,a2).

(a) {(13), (13)(24), (132), (134), (1324), (1342) }. Not a subgroup.
(12345)(678).

11. Permutations of the form (1), (a1, a2)(as, as), (a1, a2, a3), (a1, a2, as, as, as) are pos-
sible for As.

=

© v os oo
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17, (123)(12) = (13) # (23) = (12)(123).
25. Use the fact that (ab)(bc) = (abc) and (ab)(cd) = (abc)(bed).
30. (a) Show that o707 (i) = (6(a1), 0(az),...,0(ax))(i) for1<i < n.

Chapter 5. Cosets and Lagrange’s Theorem

1. The order of g and the order & must both divide the order of G. The smallest number
that 5 and 7 both divide is lem(5,7) = 35.

2. 1,2,3,4,5,6,10,12,15, 20, 30, 60.
3. False.
4. False.
5. (a) H = {0,816} 4+H = {4,12,20}
1+H = {1,917} 5+4H = {51321}
2+H = {2,10,18) 6+H = {6,14,22}
3+H = {3,1,19} 7+H = {7,15,23}.
(c) 3Z = {...,-3,0,3,6,...}
1+3Z = {...,-2,1,4,7,...}
2432 = {...,-1,2,58,...}.

7. 4909 = 4% =1 (mod 15).

12. Let gi € gH. Then there exists an h € H such that g, = gh = ghg™'g = g1 € Hg =
gH c Hg. Similarly, Hg c gH. Therefore, gH = Hg.

17. fa¢ Hythena ' ¢ H= a' e aH = a 'H = bH = there exist hy, h, € H such that
a~'hy = bhy = ab = hh;' € H.

Chapter 6. Introduction to Cryptography

1. LAORYHAPDWK.

3. Hintt Q=E,F=X,A=R.

4. 26! 1.

7. (a) 2791. (c) 112135 25032 442.

9. (a)31. (c) 14.

10. (a) n=11-41. (c) n = 8779 - 4327.

Chapter 7. Algebraic Coding Theory
. (0000) ¢ C.

(a) 2. (c) 2.

. (a) 3. (c) 4.

. (@) dmin = 2. () dmin = 1.

N

o & @
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7. (a) (00000), (00101), (10011), (10110)

Q

I
— o = O O
—_— - O O

(b) (00000), (010111), (101101), (111010)

D

I
—_— O = = O
— e e O = O

9. Multiple errors occur in one of the received words.

11. (a) A canonical parity-check matrix with standard generator matrix

Q
Il
—_— O O

(c) A canonical parity-check matrix with standard generator matrix

1 0
0 1
=111
1 0
12. (a) All possible syndromes occur.
15. (a) The cosets of C are
Cosets
C (00000) (00101) (10011) (10110)

(10000) + C | (10000) (10101) (00011) (00110)
(01000) + C (01000) (01101) (11011) (11110)
(00100) + C | (00100) (00001) (10111) (10010)
(00010) + C | (00010) (00111) (10001) (10100)
(11000) + C (11000) (11101) (01011) (01110)
(o1100) + C (01100) (01001) (11111) (11010)
(o1010) + C (01010) (01111) (11001) (11100)

A decoding table does not exist for C since it is only single error-detecting.
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19. Letx € C have odd weight and define a map from the set of odd codewords to the set
of even codewords by y = x +y. Show that this map is a bijection.

23. For 20 information positions, at least six check bits are needed to ensure an error-
correcting code.
Chapter 8. Isomorphisms

1. The group nZ is an infinite cyclic group generated by #. Every infinite cyclic group is
isomorphic to Z.

2. Define ¢ : C* - GL>(R) by
¢>(a+bi):( _“b Z )

6. Define a map from Z, into the nth roots of unity by k — cis(2kn/n).
8. Assume that Q is cyclic and try to find a generator.

11. Dy, Qg, Zg, Zy x Z4, Zy x Zy x 2.

16. (a)12. (¢)s.

20. True.

3. False.

25. Zy x Z3 x Z13 is not cyclic.

27. Let a be a generator for G. If ¢ : G — H is an isomorphism, show that ¢(a) is a
generator for H.

38. Any automorphism of Z¢ must send 1 to another generator of Zs.

45. To show that ¢ is one-to-one, let g1 = hik; and g, = hyk,. Then ¢(g1) = ¢(g2) =
¢(h1k1) = ¢(h2k2) = (hlakl) = (hz,kz) =>h=hyk =k = 9= g2

Chapter 9. Homomorphisms and Factor Groups
L (@) ‘ Ay (12)A4

Ay Ar (12)A4
(12)As | (12)As A

(c) D4 is not normal in Sy.

5. (a) A homomorphism. (c) Not a homomorphism.

8. ¢(m+n)=7(m+n)=7m+7n=¢(m)+ $(n). The kernel of ¢ is {0} and the image
of ¢ is7Z.

9. For any homomorphism ¢ : Z,4 — Z13, the kernel of ¢ must be a subgroup of Z,4 and
the image of ¢ must be a subgroup of Z;s.

14. Leta,b e G. Then ¢(a)¢(b) = ¢(ab) = ¢(ba) = ¢(b)¢(a).

18. False.

19. If a € G is a generator for G, then aH is a generator for G/H.

25. Since eg = ge for all g € G, the identity is in C(g). If x, y € C(g), then xyg = xgy =
gxy = xy € C(g).Ifxg = gx,thenx'g = gx' = x' € C(g) = C(g) is a subgroup
of G. If (g) is normal in G, then gixg; 'g = ggixg; ' forall g € G.
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28. (a)Letge Gandh e G'.Ifh = aba™'b ™", then ghg™" = gaba 'b"'g™" = (gag™")(gbg ") (ga'g ") (gb™
(gag™)(gbg™")(gag™) " (gbg™)". We also need to show that if h = hy---h, with
h; = a,'biaflbfl, then ghgf1 is a product of elements of the same type. However,
ghg™ = ghi-hug™ = (ghig ) (ghag ™)~ (ghng ™).

Chapter 10. Matrix Groups and Symmetry

1 1
L. E[HX*YHz*”XHZ* lyl*] = 5[(x+y,x+y>f Ix]* = lyl*]
1
= 5 [Ix)1” + 2¢x, ) + [y = Ix[” = yl*]
= (xy).

3. (a) An element of SO(2). (¢) Notin O(3).
5. (@) (X,¥) = X1 Y1+ + Xn Y = Y1X1 + o + YuXu = (¥, X).
7. Use the unimodular matrix

5 2

2 1)

10. Show that the kernel of the map det : O(n) — R* is SO(n).
13. True.

17. p6m.

Chapter 11. The Structure of Groups

1. Since 40 = 2°-5, the possible abelian groups of order 40 are Z4 = Zg x Zs, Zs X Z4 X Z3,
and Zs X Zz X Zz X Zz.

4. (a) {0} c (6) c (3) c Zp.

(e) {((1),0)} ¢ {(1),(123),(132)} x {0} ¢ S5 x {0} c S3 x (2) c S5 x Z4.
7. Use the Fundamental Theorem of Finitely Generated Abelian Groups.
12. If N and G/N are solvable, then they have solvable series

N=NnDNn,13-~-DN13N0:{€}
G/N = Gu/N 5 G,_1/N 5 Gi/N 5 Go/N = {N}.

The series
G:GV,DG,,,ID---DG():N:NnDN,,,,l:)“-:)N]DN():{E}

isa subnormal series. The factors of this series are abelian since Gi+1/G; 2 (Gi+1/N)/(Gi/N).
16. Use the fact that D, has a cyclic subgroup of index 2.
21. G/G’ is abelian.

Chapter 12. Group Actions

1. Example 1. 0, R* \ {0}.
Example 2. X = {1,2,3,4}.
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8.

. @) Xy = {L2,3}, Xy = {3}, Xasy = {2}, X23) = {1}, X3y = Xgmo) = @

G ={(1),(23)}, G2 = {(1), (13)}, G5 = {(1), (12) }.

. @ 01=0;,=0;5={1,2,3}.
- @) Oqy ={(1)}, Oz = {(12), (13), (14), (23), (24), (34) },

Ozyae) = {(12)(34), (13) (24), (14) (23)},
Oy = {(123), (132), (124), (142), (134), (143), (234), (243) },
O30 = {(1234), (1243), (1324), (1342), (1423), (1432)}.

The class equationis1+3 + 6+ 6 + 8 = 24.

(3*+3' +32+3' +32+37+3° +3%)/8=2L

m (1-3*+6-3°+11-3°+6-3") /24 =15,

15, (1-2°+3.2°+4.2°+2-22+2.2")/12=13.

172 (1-28+3-2°+2-2%)/6 = 80.

22. x € gC(a)g™' <= g'xg e C(a) = ag'xg = g 'xga < gag'x = xgag™" < x ¢

C(gag™).

Chapter 13. The Sylow Theorems

1.

If |G| = 18 = 2 - 3%, then the order of a Sylow 2-subgroup is 2, and the order of a Sylow
3-subgroup is 9.
If |G| = 54 = 2 - 3, then the order of a Sylow 2-subgroup is 2, and the order of a Sylow
3-subgroup is 27.

. The four Sylow 3-subgroups of S4 are

P ={(1),(123), (132)},
P, ={(1), (124), (142) },
P ={(1), (134), (143) },
Py = {(1), (234), (243)}.

. Since |G| = 96 = 2° - 3, G has either one or three Sylow 2-subgroups by the Third

Sylow Theorem. If there is only one subgroup, we are done. If there are three Sylow
2-subgroups, let H and K be two of them. |H n K| > 16; otherwise, HK would have
(32-32)/8 =128 elements, which is impossible. H N K is normal in both H and K since
it has index 2 in both groups. Hence, N(H n K) contains both H and K. Therefore,
|N(H n K)| must be a multiple of 32 greater than 1 and still divide 96, so N(HnK) = G.

. G has a Sylow g-subgroup of order g>. Since the number of such subgroups is congruent

to 1 modulo g and divides p*q?, there must be either 1, p, or p* Sylow g-subgroups. Since
g+p* —1=(p—1)(p +1), there can be only one Sylow g-subgroup, say Q. Similarly, we
can show that there is a single Sylow p-subgroup P. Every element in Q other than the
identity has order g or g%, s0 Pn Q = {e}. Now show that ik = kh for h € Pand k € Q.
Deduce that G = P x Q is abelian.

10. False.

17. If G is abelian, then G is cyclic, since |G| = 3 - 5 - 17. Now look at Example 5.

23. Define a mapping between the right cosets of N(H) in G and the conjugates of H in

Gby N(H)g ~ g 'Hg. Prove that this map is a bijection.

26. Let aG',bG’ € G/G'. Then (aG’)(bG') = abG' = ab(b'a 'ba)G’ =

(abb™'a)baG' = baG'.
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Chapter 14. Rings
1. (a) 7Z is a ring but not a field. (c) (I;D(\/Z) is a field. (f) R is not a ring.
3. (a) {1,3,7,9}. (c) {1,2,3,4,5,6}.

(e)

o )G G ) Ga) )

4. (a) {0}, {0,9}, {0,6,12}, {0,3,6,9,12,15}, {0,2,4,6,8,10,12, 14, 16}
(c) There are no nontrivial ideals.
7. Assume there is an isomorphism ¢ : C - R with ¢(i) = a.
8. False. Assume there is an isomorphism ¢ : Q(v/2) - Q(+/3 ) such that ¢(v/2) = a.
13. (a) x =17 (mod 55). (c) x = 214 (mod 2772).
16. If I # {0}, show that1e€ I.
19. @) $(@)9(b) = 9(ab) = 9(ba) = $(b)(a).

27. Let a € R with a # 0. The principal ideal generated by a is R = there existsa b € R
such that ab = 1.

29. Compute (a + b)* and (—ab)?.
35. Leta/b,c/d € Z(,y. Thena/b+c/d = (ad + bc)/bd and (a/b) - (¢/d) = (ac)/(bd)
are both in Z,y, since ged(bd, p) = 1.

39. Suppose that x> = x and x # 0. Since R is an integral domain, x = 1. To find a
nontrivial idempotent, look in M (R).

Chapter 15. Polynomials

2. (a) 9x% + 2x + 5. (b) 8x* + 7x% + 2x% + 7x.

3. (a)5x° +6x> —3x +4=(5x"2x +1)(x - 2) +6.
(©)4x° — x> +x* +4 = (4x* +4)(x* +3) + 4x7 + 2.

5. (a) No zeros in Zy;. (c) 3, 4.

7 (2x+1)*=1

8. (a) Reducible. (c) Irreducible.

10. X +x+8=(x+2)(x+9) = (x+7)(x +4).

13. Z is not a field.

14. False. x* +1= (x +1)(x +1).

16. Let ¢ : R — Sbeanisomorphism. Define ¢ : R[x] — S[x]by ¢(ao+aix+--+a,x") =
d(ao) + d(ar)x + -+ ¢(an)x".

19. Define g(x) by g(x) = @,(x + 1) and show that g(x) is irreducible over Q.

25. Find a nontrivial proper ideal in F[x].
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Chapter 16. Integral Domains

Lz =1/(a+b\/3i) = (a-b\/3i)/(a*+3b%) isin Z[\/3i] if and only if a® + 3b* = 1.
The only integer solutions to the equation are a = +1,b = 0.

2. () 5=1+2i)(1-2i). (c) 6+8i=(-1+7i)(1—1).

4. True.

8. Letz=a+biandw = c+di # 0bein Z[i]. Prove that z/w € Q(i).

14. Let a = ub with u a unit. Then v(b) < v(ub) < v(a). Similarly, v(a) < v(b).

15. Show that 21 can be factored in two different ways.

Chapter 17. Lattices and Boolean Algebras

2.
30
I
10 15
ava
2 5 3
ANV
5. False. 1

6. (@) (avbva')nra.
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(©av(anb).

a— b

a

8. Not equivalent.

10. a' Af(anb’)vb]l=an(avh).

15. Let I,] be ideals in R. We need to show that I+ ] = {r+s : r € [ands € J}
is the smallest ideal in R containing both I and J. If 1,72 € I and s1,s2 € ], then
(r+s1)+(r2+s2) = (n+r2)+(si+s2)isinI+]. Fora € R, a(r1+s1) = ani+as; € [+];
hence, I + J is an ideal in R.

19. (a) No.

21. (=).a=b=(anb)v(a'ab)=(ana’)v(a' rna)=0vO=0.

(). (anb)v(a’'ab)=0=avb=(ava)vb=av(avb)=av[Ia(avb)]=
av[(ava')a(avb)] = [av(aab')]v[av(a'aAb)] =av[(arb)v(a’ Ab)] = aVv0 =a.
A symmetric argument shows thata v b = b.

Chapter 18. Vector Spaces
3. @(\/5, \/3) has basis {1, V2,3, \/E} over Q.
5. P, has basis {l,x,xz, .. ,x"_l}.
7. (a) Subspace of dimension 2 with basis {(1,0,-3), (0,1,2)}.
(d) Not a subspace.
10. 0=a0=a(-v+v)=a(-v)+av=—av=a(-v).
12. Letvo=0,vi,...,vps € Vand ag # 0, 1,...,a, € F. Then agvg + -+ + apvy = 0.
15. (a) Letu,v e ker(T) and « € F. Then

T(u+v)=T(u)+T(v)=0
T(av) =aT(v) =a0=0.
Hence, u + v, av € ker(T) = ker(T) is a subspace of V.
@QTw)=TW)<=Tu-v)=Tu)-T(v)=0<u-v=0<=u="7.
17. (@) Letu,u’ € Uandv,v' € V. Then

(w+v)+ (W +v)=(u+u' )+ (v+v)eU+V
a(u+v)=au+aveU+V.

Chapter 19. Fields
1. (a)x* - %xz - %. (c) x* — 2x% + 25.

2. (a) {L,V2,V3, V6 }. (0) {1,i,/2,V/2i}. (e) {1,2"6,21/3,21/2 2213 25/6},
3' (a) @(\/§> \/7)'
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5. Use the fact that the elements of Zz[x]/(x3 +x+1)areo, 1, a,1+a,a’,1+a% a+a,
1+ a + a® and the fact that a® + a +1= 0.

8. False.

14. Suppose that E is algebraic over F and K is algebraic over E. Let « € K. It suffices to
show that « is algebraic over some finite extension of F. Since « is algebraic over E, it
must be the zero of some polynomial p(x) = o + fix + -+ + Sx" in E[x]. Hence « is
algebraic over F(Bo, ..., Bn)-

22. @(\/§, \/7) > @(\/§ + \/7) since {1, V3,7, \/ﬁ} is a basis for @(\/3, \/7) over
Q. Since [Q(\/3,v/7) : Q] = 4, [Q(+/3 +/7) : Q] = 2 or 4. Since the degree of the
minimal polynomial of V3+7is 4, @(\/5, \/7) = @(\/3 + \/7)

27. Let f € F(a) notin F. Then 8 = p(a)/q(a), where p and g are polynomials in « with
q(a) # 0 and coeflicients in F. If § is algebraic over F, then there exists a polynomial
f(x) € F[x] such that f(f8) = 0. Let f(x) = ao + a1x + -+ + a,x". Then

Py ICO R D :(COR W JCAY
0=1(F) f(g(a)) : (qw))+ : ”(q(oo)'

Now multiply both sides by g(a)" to show that there is a polynomial in F[x] that has «
as a zero.

Chapter 20. Finite Fields

1. (a) 2. (c) 2.

4. There are eight elements in Z,(«). Exhibit two more zeros of x> + x* + 1 other than «
in these eight elements.

5. Find an irreducible polynomial p(x) in Z3[x] of degree 3 and show that Z5[x]/(p(x))
has 27 elements.

7 @x° 1= (x+D(x* + x>+ x>+ x +1).
(©x° 1= (x+1)(x* +x+1)(x° + x* +1).

8. True.

11. (a) Use the fact that x” —1= (x + 1) (x> + x + 1) (x> + x> +1).

12. False.

17. If p(x) € F[x], then p(x) € E[x].

18. Since «a is algebraic over F of degree n, we can write any element f3 € F( ) uniquely as
B=ao +ajo+-+ay_1a" P with a; € F. There are q" possible n-tuples (ao, a1, ..., dn-1).

24. Factor x™' — 1 over Z,.

Chapter 21. Galois Theory

1. (@) Z3. (c) Zy x Z5 x Z5.

2. (a) Separable. (c) Not separable.

3. [GF(729) : GF(9)] = [GF(729) : GF(3)]/[GF(9) : GF(3)] = 6/2 = 3 = G(GF(729)/GF(9)) =
Zs. A generator for G(GF(729)/GF(9)) is o, where o35 () = @ = o fora e
GF(729).

4. (@) Ss. (c) Ss.



360 HINTS AND SOLUTIONS

5. (2) Q(i).

7. Let E be the splitting field of a cubic polynomial in F[x]. Show that [E : F] is less than
or equal to 6 and is divisible by 3. Since G(E/F) is a subgroup of S3 whose order is
divisible by 3, conclude that this group must be isomorphic to Z3 or Ss.

9. G is a subgroup of S,.

16. True.

20. (a) Clearly w, w?,...,wP™ " are distinct since w # 1 or o. To show that w’ is a zero of
@, calculate @p(w").

(b) The conjugates of w are w, w?, ..., """ Define a map ¢; : Q(w) - Q(w’) by
$i(a0+ mw + -+ ap 20’ 2) = ag + @@ + -+ ¢poa(w )P,
where a; € Q. Prove that ¢; is an isomorphism of fields. Show that ¢, generates

G(Q(w)/Q).

(c) Show that {w, W, ..., a)‘H} is a basis for Q(w) over Q, and consider which linear
combinations of w, w?, . .., w? ™" are left fixed by all elements of G(Q(w)/Q).
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perfect, 121
shortened, 121
linear, 107
minimum distance of, 102
polynomial, 316
Commutative diagrams, 146
Commutative rings, 208
Composite integer, 25
Composition series, 175
Congruence modulo 7, 15
Conjugacy classes, 184
Conjugate elements, 329
Conjugate fields, 346
Conjugate permutations, 85
Conjugate, complex, 54
Conjugation, 182
Constructible number, 303
Correspondence Theorem
for groups, 147
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for rings, 218
Coset
double, 85
leader, 116
left, 79
representative, 79
right, 79
Coset decoding, 115
Cryptanalysis, 87
Cryptosystem
RSA, 90
affine, 88
definition of, 86
monoalphabetic, 88
polyalphabetic, 88
private key, 86
public key, 86
single key, 86
Cycle
definition of, 66
disjoint, 67

De Morgan’s laws
for Boolean algebras, 271
for sets, 6
De Morgan, Augustus, 276
Decoding table, 117
Deligne, Pierre, 307
DeMoivre’s Theorem, 56
Derivative, 245, 312
Derived series, 179
Descending chain condition, 262
Determinant, Vandermonde, 319
Dickson, L. E., 145
Diffie, W.,, 89
Direct product of groups
external, 128
internal, 130
Direct sum of vector spaces, 287
Discriminant
of a separable polynomial, 346
of the cubic equation, 247
of the quadratic equation, 246
Division algorithm
for integers, 22
for polynomials, 234
Division ring, 208
Domain
Euclidean, 256
principal ideal, 253
unique factorization, 252
Doubling the cube, 306

INDEX

Eisenstein’s Criterion, 241
Element

associate, 252

centralizer of, 150

idempotent, 228

identity, 36

inverse, 36

irreducible, 252

nilpotent, 227

order of, 51

prime, 252

primitive, 332

transcendental, 292
Equivalence class, 14
Equivalence relation, 13
Euclidean algorithm, 25
Euclidean domain, 256
Euclidean group, 159
Euclidean inner product, 156
Euclidean valuation, 256
Euler ¢-function, 83
Euler, Leonhard, 83, 307
Extension

algebraic, 292

field, 289

finite, 295

normal, 335

radical, 340

separable, 311, 331

simple, 292
External direct product, 128

Faltings, Gerd, 307
Feit, W., 145, 193

Fermat’s factorization algorithm, 94

Fermat’s Little Theorem, 83
Fermat, Pierre de, 83, 307
Ferrari, Ludovico, 243
Ferro, Scipione del, 243
Field, 209
algebraically closed, 298
base, 289
conjugate, 346
extension, 289
fixed, 333
Galois, 313
of fractions, 251
of quotients, 251
prime, 261
splitting, 299
Finitely generated group, 170
Fior, Antonio, 243



First Isomorphism Theorem
for groups, 145
for rings, 217
Fixed point set, 183
Freshman’s Dream, 311
Frobenius map, 325
Function
bijective, 9
Boolean, 191, 279
composition of, 9
definition of, 7
domain of, 7
identity, 11
injective, 8
invertible, 11
one-to-one, 8
onto, 8
order-preserving, 279
range of, 8
surjective, 8
switching, 191, 279
Fundamental Theorem
of Algebra, 299, 344
of Arithmetic, 26
of Finite Abelian Groups, 172
of Galois Theory, 336

Godel, Kurt, 276
Galois field, 313
Galois group, 328
Galois, Evariste, 41, 339
Gauss’s Lemma, 258
Gauss, Karl Friedrich, 260
Gaussian integers, 212
Generator of a cyclic subgroup, 51
Generators for a group, 170
Glide reflection, 160
Gorenstein, Daniel, 145
Greatest common divisor
of elements in a UFD, 262
of two integers, 23
of two polynomials, 236
Greatest lower bound, 266
Greiss, R., 145
Grothendieck, A., 307
Group
p-group, 171, 197
abelian, 36
action, 181
alternating, 70
automorphism of, 134
center of, 77, 150, 184

circle, 57
commutative, 36
cyclic, 51

definition of, 36
dihedral, 72
Euclidean, 159
factor, 137

finite, 39

finitely generated, 170
Galois, 328

general linear, 38, 155
generators of, 170
Heisenberg, 45
homomorphism of, 139
infinite, 39
isomorphic, 123
isomorphism of, 123
nonabelian, 36
noncommutative, 36
of units, 37

order of, 39
orthogonal, 155
permutation, 65
point, 164
quaternion, 39
quotient, 137

simple, 141, 144
solvable, 177

space, 164

special linear, 42, 155
special orthogonal, 159
symmetric, 64
symmetry, 161
torsion, 178

Hamming distance, 101
Hamming, R., 104
Hellman, M., 89
Hilbert, David, 166, 220, 276, 307
Homomorphic image, 139
Homomorphism
canonical, 145, 217
evaluation, 215, 234
kernel of a group, 141
kernel of a ring, 214
lattice, 279
natural, 145, 217
of groups, 139
ring, 214

Ideal
definition of, 215
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maximal, 218 Lattices, Principle of Duality for, 266
one-sided, 216 Least upper bound, 265
prime, 219 Left regular representation, 127
principal, 216 Lie, Sophus, 41, 200
trivial, 215 Linear combination, 282
two-sided, 216 Linear dependence, 283
Idempotent, 228 Linear functionals, 287
Indeterminate, 230 Linear independence, 283
Index of a subgroup, 81 Linear map, 152
Induction Linear transformation
first principle of, 20 definition of, 10, 152, 286
second principle of, 21 kernel of, 286
Infimum, 266 null space of, 286
Inner product, 106 range of, 286
Integral domain, 208 Lower bound, 265
Internal direct product, 130
International standard book number, 48 Mapping, see Function
Irreducible element, 252 Matrix
Irreducible polynomial, 238 distance-preserving, 157
Isometry, 160 generator, 108
Isomorphism inner product-preserving, 157
of Boolean algebras, 271 invertible, 154
of groups, 123 length-preserving, 157
ring, 214 nonsingular, 154
null space of, 106
Join, 266 orthogonal, 155
Jordan, C., 145 parity-check, 108
Jordan-Holder Theorem, 176 similar, 14
unimodular, 164
Kernel Matrix, Vandermonde, 319
of a group homomorphism, 141 Maximal ideal, 218
of a linear transformation, 286 Maximum-likelihood decoding, 99
of a ring homomorphism, 214 Meet, 266
Key Metric, 120
definition of, 86 Minimal generator polynomial, 318
private, 86 Minimal polynomial, 293
public, 86 Minkowski, Hermann, 307
single, 86 Monic polynomial, 231
Klein, Felix, 41, 152, 220 Mordell-Weil conjecture, 307
Kronecker delta, 111, 157 Multiplicative subset, 262
Kronecker, Leopold, 307 Multiplicity of a root, 331

Kummer, Ernst, 307
Nilpotent element, 227

Lagrange’s Theorem, 81, 82 Noether, A. Emmy, 220
Lagrange, Joseph-Louis, 41, 71, 83 Noether, Max, 220
Laplace, Pierre-Simon, 71 Normal extension, 335
Lattice Normal series of a group, 174
completed, 268 Normal subgroup, 136
definition of, 266 Normalizer, 47, 199
distributive, 269 Null space
homomorphism, 279 of a linear transformation, 286

Lattice of points, 162 of a matrix, 106



Odd Order Theorem, 204
Orbit, 78, 183

Orthogonal group, 155
Orthogonal matrix, 155
Orthonormal set, 157

Partial order, 264
Partially ordered set, 264
Partitions, 14
Permutation
conjugate, 85
definition of, 10, 64
even, 70
odd, 70
Permutation group, 65
Plaintext, 86
Polynomial
code, 316
content of, 258
cyclotomic, 245
definition of, 230
degree of, 231
error, 326
error-locator, 326
greatest common divisor of, 236
in #n indeterminates, 233
irreducible, 238
leading coefficient of, 231
minimal, 293
minimal generator, 318
monic, 231
primitive, 258
root of, 236
separable, 331
zero of, 236
Polynomial separable, 311
Poset
definition of, 264
largest element in, 268
smallest element in, 268
Power set, 28, 264
Prime element, 252
Prime field, 261
Prime ideal, 219
Prime integer, 25
Prime subfield, 261
Primitive nth root of unity, 57, 340
Primitive element, 332
Primitive Element Theorem, 332
Primitive polynomial, 258
Principal ideal, 216
Principal ideal domain (PID), 253

Principal series, 175
Pseudoprime, 94

Quaternions, 39, 211

Repeated squares, 58
Resolvent cubic equation, 247
Right regular representation, 134
Rigid motion, 33, 160
Ring
Artinian, 262
Boolean, 227
center of, 227
characteristic of, 214
commutative, 208
definition of, 208
division, 208
factor, 217
finitely generated, 262
homomorphism, 214
isomorphism, 214
local, 263
Noetherian, 254
of integers localized at p, 227
of quotients, 262
quotient, 217
with identity, 208
with unity, 208
Rivest, R., 90
RSA cryptosystem, 9o
Ruffini, P, 338
Russell, Bertrand, 276

Scalar product, 280
Schreier’s Theorem, 180
Second Isomorphism Theorem

for groups, 146

for rings, 218
Semidirect product, 168
Shamir, A., 90
Shannon, C., 104
Sieve of Eratosthenes, 29
Simple extension, 292
Simple group, 141
Simple root, 331
Solvability by radicals, 340
Spanning set, 282
Splitting field, 299
Squaring the circle, 306
Standard decoding, 115
Subfield

prime, 261
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Subgroup
p-subgroup, 197
centralizer, 185
commutator, 150, 179, 202
cyclic, 51
definition of, 41
index of, 81
isotropy, 183
normal, 136
normalizer of, 199
proper, 41
stabilizer, 183
Sylow p-subgroup, 198
torsion, 62
transitive, 78
translation, 164
trivial, 41
Subnormal series of a group, 174
Subring, 211
Supremum, 265
Switch
closed, 274
definition of, 274
open, 274
Switching function, 191, 279
Sylow p-subgroup, 198
Sylow, Ludvig, 200
Syndrome of a code, 115, 326

Tartaglia, 243
Third Isomorphism Theorem
for groups, 148
for rings, 218
Thompson, J., 145, 193
Totally ordered set, 279
Transcendental element, 292
Transcendental number, 292
Transposition, 68
Trisection of an angle, 306

Unique factorization domain (UFD), 252

Unit, 208, 252
Universal Product Code, 47
Upper bound, 265

Vandermonde determinant, 319
Vandermonde matrix, 319
Vector space

basis of, 284

definition of, 280

dimension of, 285

direct sum of, 287
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dual of, 287
subspace of, 282

Weight of a codeword, 102
Weil, André, 307
Well-defined map, 8
Well-ordered set, 21
Whitehead, Alfred North, 276
Wilson’s Theorem, 325

Zassenhaus Lemma, 180
Zero
multiplicity of, 331
of a polynomial, 236
Zero divisor, 209



