LARSON—INFO 790–CLASSROOM WORKSHEET 03 Using CONJECTURING on CoCalc

- 1. Log in to CoCalc.
 - (a) Start the Chrome browser.
 - (b) Go to https://cocalc.com
 - (c) Login (your VCU email address is probably your username).
 - (d) You should see an existing Project for our class. Click on that.
 - (e) Click "New", then type **790-c03** into the box, and click "Jupyter Notebook".
 - (f) When your notebook opens look on the upper-right to make sure the SageMath kernel is running.
- 2. Load "conjecturing.py" by running load("conjecturing.py"). (Your "790-c03.ipynb" must be in your Home/root directory for this to work, and there should be an "expressions" and "conjecturing.py" file there too).

Conjecturing Properties

3. Try this first simple example. Interpret the conjectures. Are they true?

- 4. How does the *Truth* heuristic work in the "properties" case?
- 5. How does the *Significance* heuristic work in the "properties" case?
- 6. Re-run the code to see some under-the-hood details using the *verbose* and *debug* options:

```
objects = [2,3,4]
properties = [Integer.is_prime, Integer.is_square, Integer.is_squarefree]
property_of_interest = properties.index(Integer.is_prime)
propertyBasedConjecture(objects, properties, property_of_interest,
            sufficient=True, debug=True, verbose=True)
```

Gravity Example

In the paper you read this week, one of the examples was about using the CONJEC-TURING program for how Newton's Law of Gravitation $(F = g \frac{m_1 m_2}{r^2})$, where m_1 and m_2 are the masses of two bodies, r is the distance between them, g is the gravitational constant, and F is the force between the bodies). We can run this experiment ourselves.

- 7. Copy the file "gravity_example.sage" from your Handouts folder to your Project's Home/root directory.
- 8. We will shortly run that script. Open that file first (by clicking on "gravity_example.sage" from your Home directory file list) and we'll talk about the code.
- 9. Find the call to the Conjecturing program. What are the *objects*? What is their *type*? What are the *methods* available for those objects?
- 10. How can we get an example of one of the objects? (Let example = train_pairs[0]).
- 11. In your worksheet, run load("gravity_example.sage"). You should get a number of conjectures. Do you see anything that looks like Newton's Law?
- 12. How can we get an example of one of the conjectures? (Let conj = pair_above_conjs[0]).
- 13. How can we evaluate conjecture conj for our *example*? (Run: conj.evaluate(example)). This will be TRUE or FALSE depending on whether the example is true for the conjectured bound.

Later we'll see that these *invariant conjectures* (which are in fact properties) can be used as properties for property conjectures (they will give us new novel properties besides properties/booleans/classes that are given with a specific problem).

14. What is we want just the *value* the conjectured bound gives for a specific object? (Run: conj[0].evaluate(example, returnBoundValue=True)).