\qquad
First name \qquad

LARSON—OPER 731—HOMEWORK h06 Test 1 Review

Concepts For each concept, give a definition and an example.

1. What is a linear program?
2. What is an integer program?
3. What is a mixed integer program?
4. What is an assignment problem?
5. What is a feasible solution to an LP?
6. What is a optimal solution to an LP?
7. What is a certificate of optimality for an LP?
8. What is the canonical form for an LP?
9. What is a an s - t-path?

10 . What is an st-cut in a graph?
11. What is a matching in a graph?
12. What is a polyhedron?
13. What is an extreme point in a polyhedron?

Theorems
14. What is the Fundamental Theorem of Linear Programming?
15. What is the Weak Duality Theorem?

Problems Explain everything. As scientists it is never enough to write answers. They must be communicated-convincingly - to others.
Consider the IP:
maximize: $z=x_{1}+x_{2}+x_{3}$
subject to: $\begin{gathered}x_{1}+x_{2} \\ x_{1} \\ x_{2}+x_{3}\end{gathered} \leq 1$
$\leq x_{3} \leq 1$
≤ 1
16. Find a feasible solution.
17. Suppose we replace the integer requirement with $x_{1}, x_{2}, x_{3} \geq \mathbb{O}$ (so now we have an LP). Explain why the LP optimum must be at least as large as the IP optimum.
18. Write this LP in the form $\max \left\{c^{T} x: A x \leq b, x \geq \mathbb{O}\right\}$. What are the A, b, c ?
19. Find the dual of this LP.
20. Find a feasible solution for the dual and explain what it tells you about the optimum of the primal LP.
21. What is the rank of A ?
22. Write this LP in standard equality form.
23. Find a basis for this LP.
24. Find a basic feasible solution.
25. Suppose a model includes a constraint $x_{4} \geq\left|x_{1}+x_{2}\right|$. If we want an LP model, how can we rewrite this constraint for our LP?
26. If the LP $\max \left\{c^{T} x: A x \leq b, x \geq \mathbb{O}\right\}$ is infeasible, what could you do to prove that it is infeasible?

27. Write an IP to model finding a maximum matching in this graph. Explain.
28. Write an IP to model finding a minimum vertex cover in this graph. Explain.
29. What is the "obvious" algorithm to find a minimum vertex cover in a graph. Explain why it would take an exponential number of steps (as a function of the number of vertices)?
30. Let P be an st-path in a graph. Why must every edge of P be contained in some st-cut?

31. What is the (unique) minimum weight 1-3 path in this graph?
32. Write an IP to find a minimum weight 1-3 path in this graph. Explain.
33. Find a feasible solution.
34. If $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$, find A^{-T}.

