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LARSON—OPER 731—CLASSROOM WORKSHEET 19
Vertex Packing Linear Programs

1. Log in to VCU’s Athena cluster.

The following directions assume you have an Athena account, that you have set up
Sage, and that you have set up (using make) the Conjecturing program.

(a) Start the Chrome browser.

(b) If you are off-campus, you’ll need to connect to the VPN first.

(c) Then go to https://athena3.hprc.vcu.edu

(d) Login using your VCU EID as your username, and your corresponding VCU
password.

(e) Click the Apps button and a Sage session. The default options are fine. This
will take a couple of minutes.

(f) Click the Apps button and start an “athena shell access” session (this will give
you a terminal window, where we can issue commands).

(g) Your Sage session will first say “Queued”, then “Starting”. When it is ready
you will see a button that says, “Connect to Sage”. Click that.

(h) You should then get an “untitled” interactive-Python notebook (ipynb), or the
last file you had open the previous time you used Athena.

(i) When your notebook opens look on the upper-right to make sure the SageMath
kernel is running (if it isn’t you can change the kernel).

Vertex Packing

A vertex packing in a graph is a set of vertices that have no edges between them. The
vertex packing number of a graph is the size (cardinality) of a largest vertex packing.

2. Find the vertex packing number of c5=graphs.CycleGraph(5) by hand. What is
the largest vertex packing that you can find?

3. Find the vertex packing number for pete=graphs.PetersenGraph(). Use c5.show()
to help you visualize.

Now we will define a new graph function for computing the hard-to-compute vertex
packing number of a graph. We’ll want to look at each possible pair of vertices in
a set S of vertices to see if there’s an edge between them. One way to do that is
see if a given pair is in the list of edges. We can get the edges of a graph g using
g.edges(labels=False). Try it for the Petersen graph and c5.



4. First let’s write a test for whether or not a specific set S of vertices is stable. Then
one possible algorithm involves testing every subset of vertices. If S is stable then
the test for (i, j) will not be an edge (will not be in the list of edges) of graph g for
each possible pair i, j of vertices.

def is_packing(g, S):

E=g.edges(labels=False)

for i in S:

for j in S:

if (i,j) in E:

return False

return True

5. Test this for some (sub)sets of vertices of the Petersen graph.

Subsets and Counting

The “naive” (and inefficient) way to find a largest vertex packing in a graph is to test
every subset of vertices, check if it is a packing, and then keep track of the largest
one you’ve seen up to that point. Let’s see why its inefficient.

6. Suppose you have a very small graph, with just 3 vertices. How many subsets of the
vertex set would you have to look at? Run: Subsets([0,1,2]).

7. How many is that? We can turn the Subset generator into a list and use the Python
list counting function len. Run len(Subsets([0,1,2])). (Don’t ever try this on a set
that’s much larger—the list gets created in memory and might freeze your computer
as it runs out of RAM).

8. (Computational Aside) A graph with 100 vertices is considered “small” (we’d like
to find information about graphs with millions of vertices). How long (minutes, hours,
days, years?) would it take for an algorithm to perform 2100 computational steps.
Assume you can perform one million (106) steps per second.

9. Here is a function vertex packing number(g) that takes a graph g as input, forms
every possible subset of vertices, checks if that set of vertices is a packing, and updates
the largest vertex packing found so far, and returns the number of vertices in a largest
vertex packing.

def naive_maximum_vertex_packing(g):

packing = []

L=subsets(g.vertices())

for S in L:

if is_packing(g,S)==True:

if len(S) > len(packing):

packing = S

return packing

def vertex_packing_number(g):

return len(naive_maximum_vertex_packing(g))



Vertex Packing IP and LP

10. We have modeled the maximum vertex packing problem and an an Integer Program-
ming (IP) problem: associate a 0-1 variable xi to each vertex vi, require that for each
edge vivj that xi + xj ≤ 1, and find the maximum sum

∑
xi.

p = MixedIntegerLinearProgram(maximization=True)

x = p.new_variable(nonnegative=True)

p.set_objective(sum(x[v] for v in g.vertices()))

for (u,v) in g.edge_iterator(labels=False):

p.add_constraint(x[u] + x[v] <= 1)

p.solve()

11. If we allow the variables to be nonnegative real numbers instead of integers (that is,
to relax the IP) we get a linear program (LP). The relaxation of the vertex packing
IP gives an optimum value that is necessarily an upper bound for the vertex packing
number. Test this with any graph g (you can run g=pete to use this code for the
Petersen graph).

p = MixedIntegerLinearProgram(maximization=True)

x = p.new_variable(integer=True, nonnegative=True)

p.set_objective(sum(x[v] for v in g.vertices()))

for (u,v) in g.edge_iterator(labels=False):

p.add_constraint(x[u] + x[v] <= 1)

p.solve()

12. Use p.get values(x) and check that the values correspond to a vertex packing of
your graph.

13. Here is code to solve the Vertex Packing LP. Test this with any graph g (you can run
g=pete to use this code for the Petersen graph).

p = MixedIntegerLinearProgram(maximization=True)

x = p.new_variable(nonnegative=True)

p.set_objective(sum(x[v] for v in g.vertices()))

for (u,v) in g.edge_iterator(labels=False):

p.add_constraint(x[u] + x[v] <= 1)

p.solve()



14. Here’s how we can write this in Sage in a general way (where we can easily input any
graph g).

def vertex_packing_LP(g):

p = MixedIntegerLinearProgram(maximization=True)

x = p.new_variable(nonnegative=True)

p.set_objective(sum(x[v] for v in g.vertices()))

for v in g.vertices():

p.add_constraint(x[v], max=1)

for (u,v) in g.edge_iterator(labels=False):

p.add_constraint(x[u] + x[v], max=1)

return p.solve()

15. Now test this by finding the LP upper bound for the Petersen graph. Evaluate:
vertex packing LP(pete).

16. It is possible to find LP bounds for graphs where calculating the true vertex pack-
ing number is impossible. Let g be a random graph on 100 vertices. Evaluate:
g=graphs.RandomGNP(100,.5)?

What do you expect the upper bound to be? Now calculate.


