Last name	

First name _____

LARSON—OPER 731—CLASSROOM WORKSHEET 16 Complementary Slackness!

Concepts

- (Sec. 2.4) basis, basic variable, nonbasic variable, basic solution, basic feasible solution, canonical form.
- (Sec. 2.8) hyperplane, halfspace, line, line segment, convex, polyhedron, tight inequality, extreme point.
- (Sec. 3.1) dual LP, Weak duality theorem.
- (Sec. 4.3) complementary slackness, cone, cone of tight constraints.
- 1. What is complementary slackness? What is the Complementary Slackness Theorem?

Geometry of Optimal Solutions

2. What is the *cone* of vectors $a^{(1)}, a^{(2)}, \ldots, a^{(k)}$ in \mathbb{R}^n .

3. Find the cone of vectors $a^{(1)} = (2, -1)^T$, $a^{(2)} = (3, 1)^T$, $a^{(3)} = (2, 1)^T$ in \mathbb{R}^2 .

4. Check that $\bar{x} = (2, 1)^T$ is feasible for the primal linear program: max $(\frac{3}{2}, \frac{1}{2})x$ subject to:

$$\begin{pmatrix} 1 & 0\\ 1 & 1\\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2\\ 3\\ 2 \end{pmatrix}$$
$$x \ge \mathbb{O}$$

5. Identify which constraints are tight for \bar{x} . Let $J(\bar{x})$ be the corresponding row indices.

6. What is the cone of tight constraints for \bar{x} for polyhedron $(P) = \{x : Ax \leq b\}$ in this example?

7. Find the dual LP.

8. Suppose \bar{x} were optimal for the primal LP. What would the complementary slackness conditions require for an optimal \bar{y} for the dual LP?

9. Find a dual feasible \bar{y} that we can use to prove that \bar{x} is optimal for the primal LP.

10. (Claim:) Let \bar{x} be a feasible solution to $max\{c^Tx : Ax \leq b\}$. Then \bar{x} is optimal if and only if and only if c is in the cone of tight constraints for \bar{x} .