Last name _____

First name

LARSON—OPER 731—CLASSROOM WORKSHEET 16 Complementary Slackness!

Concepts

- (Sec. 2.4) basis, basic variable, nonbasic variable, basic solution, basic feasible solution, canonical form.
- (Sec. 2.8) hyperplane, halfspace, line, line segment, convex, polyhedron, tight inequality, extreme point.
- (Sec. 3.1) dual LP, Weak duality theorem.
- (Sec. 4.3) complementary slackness, cone, cone of tight constraints.
- 1. What is complementary slackness? What is the Complementary Slackness Theorem?

2. Find the dual for following (primal) optimization problem: max (5,3,5)x

subject to:

$$\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$$
$$x \ge \mathbb{O}$$

3. What are the complementary slackness conditions for an optimal solution to this primal-dual pair?

4. Check that $\bar{x} = (1, -1, 1)^T$ is primal-feasible and $\bar{y} = (0, 2, 1)^T$ is dual-feasible.

5. Check that \bar{x} and \bar{y} are optimal by verifying the complementary slackness conditions.

Geometry of Optimal Solutions

6. What is the *cone* of vectors $a^{(1)}, a^{(2)}, \ldots, a^{(k)}$ in \mathbb{R}^n .

7. Find the cone of vectors $a^{(1)} = (2, -1)^T$, $a^{(2)} = (3, 1)^T$, $a^{(3)} = (2, 1)^T$ in \mathbb{R}^2 .

8. Check that $\bar{x} = (2, 1)^T$ is feasible for the linear program: $\max \left(\frac{3}{2}, \frac{1}{2}\right) x$ subject to: $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

$$x \ge \mathbb{O}$$

9. Identify which constraints are tight for \bar{x} . Let $J(\bar{x})$ be the corresponding row indices.

10. What is the *cone of tight constraints* for \bar{x} for polyhedron $(P) = \{x : Ax \leq b\}$ in this example?