Last n	ame		
First r	amo		

LARSON—OPER 731—CLASSROOM WORKSHEET 10 Duality!

Concepts

- (Sec. 2.4) basis, basic variable, nonbasic variable, basic solution, basic feasible solution, canonical form.
- (Sec. 2.8) hyperplane, halfspace, line, line segment, convex, polyhedron, tight inequality, extreme point.
- (Sec. 3.1) dual LP.

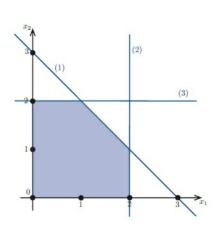
Review

- 1. What is the *line* through points $x^{(1)}$ and $x^{(2)}$ in \mathbb{R}^n ?
- 2. What is the *line segment* through points $x^{(1)}$ and $x^{(2)}$ in \mathbb{R}^n ?
- 3. When is a set $C \subseteq \mathbb{R}^n$ convex?
- 4. Claim: Halfspaces are convex.
- 5. Claim: The intersection of halfspaces is convex.
- 6. Claim: Polyhedra are convex.
- 7. What is an extreme point of a polyhedron?
- 8. When is an inequality $\alpha^T x = \beta$ tight for a point \bar{x} .
- 9. Notation: What is $A^{=}x \leq b^{=}$ for a point \bar{x} ?

Geometry

max
$$(c_1, c_2)x$$

s.t.
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} x \le \begin{pmatrix} 3 \\ 2 \\ 2 \\ 0 \\ 0 \end{pmatrix}.$$
 (1) (2) (2) (3) (4) (5)



- 10. **Claim**: For a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}, x \in \mathbb{R}^n$, and $A^=x \leq b^=$ tight for \bar{x}, \bar{x} is an extreme point of P if and only if $rank(A^=) = n$.
- 11. **Claim**: Let A be a matrix with linearly independent rows and b be a vector. Let $P = \{x : Ax = b, x \ge \mathbb{O}\}$ and let $\bar{x} \in P$. Then \bar{x} is an extreme point of P if and only if \bar{x} is a basic feasible solution of Ax = b.

Duality

12. Consider the LP: $\max\{c^T x : Ax \leq b, x \geq \mathbb{O}\}.$

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 20 \\ 18 \\ 8 \end{pmatrix} \quad c = \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

Find the dual. Find feasible solutions for the primal and dual. Use these to estimate the optimal value of the primal objective function.

13. We will consider a shortest-path LP and investigate how the dual can be interpreted.