Last name	

First name _____

LARSON—OPER 731—CLASSROOM WORKSHEET 09 The Geometry of Linear Programs

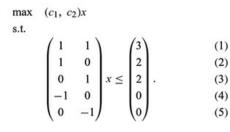
Concepts

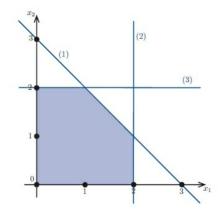
- (Sec. 2.4) basis, basic variable, nonbasic variable, basic solution, basic feasible solution, canonical form.
- (Sec. 2.8) hyperplane, halfspace, line, line segment, convex, polyhedron, tight inequality, extreme point

Review

- 1. What is a hyperplane in \mathbb{R}^n ?
- 2. What is a *halfspace* in \mathbb{R}^n ?
- 3. Why are hyperplanes in \mathbb{R}^n (n-1)-dimensional?
- 4. What is a polyhedron in \mathbb{R}^n ?

Geometry





- 5. What is the *line* through points $x^{(1)}$ and $x^{(2)}$ in \mathbb{R}^n ?
- 6. What is the *line segment* through points $x^{(1)}$ and $x^{(2)}$ in \mathbb{R}^n ?

- 7. When is a set $C \subseteq \mathbb{R}^n$ convex?
- 8. Claim: Halfspaces are convex.
- 9. Claim: The intersection of halfspaces is convex.
- 10. Claim: Polyhedra are convex.
- 11. What is an *extreme point* of a polyhedron?
- 12. When is an inequality $\alpha^T x = \beta$ tight for a point \bar{x} .
- 13. Notation: What is $A^{=}x \leq b^{=}$ for a point \bar{x} ?
- 14. Claim: For a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}, x \in \mathbb{R}^n$, and $A^=x \leq b^=$ tight for \bar{x}, \bar{x} is an extreme point of P if and only if $rank(A^=) = n$.
- 15. Claim: Let A be a matrix with linearly independent rows and b be a vector. Let $P = \{x : Ax = b, x \ge \mathbb{O}\}$ and let $\bar{x} \in P$. Then \bar{x} is an extreme point of P if and only if \bar{x} is a basic feasible solution of Ax = b.