\qquad
First name \qquad

LARSON—OPER 731—CLASSROOM WORKSHEET 09 The Geometry of Linear Programs

Concepts

- (Sec. 2.4) basis, basic variable, nonbasic variable, basic solution, basic feasible solution, canonical form.
- (Sec. 2.8) hyperplane, halfspace, line, line segment, convex, polyhedron, tight inequality, extreme point

Review

1. What is a hyperplane in \mathbb{R}^{n} ?
2. What is a halfspace in \mathbb{R}^{n} ?
3. Why are hyperplanes in $\mathbb{R}^{n}(n-1)$-dimensional?
4. What is a polyhedron in \mathbb{R}^{n} ?

Geometry

$$
\begin{array}{ll}
\max & \left(c_{1}, c_{2}\right) x \\
\text { s.t. } \\
\qquad\left(\begin{array}{cc}
1 & 1 \\
1 & 0 \\
0 & 1 \\
-1 & 0 \\
0 & -1
\end{array}\right) x \leq\left(\begin{array}{l}
3 \\
2 \\
2 \\
0 \\
0
\end{array}\right) . \tag{1}
\end{array}
$$

(5)

5. What is the line through points $x^{(1)}$ and $x^{(2)}$ in \mathbb{R}^{n} ?
6. What is the line segment through points $x^{(1)}$ and $x^{(2)}$ in \mathbb{R}^{n} ?
7. When is a set $C \subseteq \mathbb{R}^{n}$ convex?
8. Claim: Halfspaces are convex.
9. Claim: The intersection of halfspaces is convex.
10. Claim: Polyhedra are convex.
11. What is an extreme point of a polyhedron?
12. When is an inequality $\alpha^{T} x=\beta$ tight for a point \bar{x}.
13. Notation: What is $A^{=} x \leq b^{=}$for a point \bar{x} ?
14. Claim: For a polyhedron $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}, x \in \mathbb{R}^{n}$, and $A^{=} x \leq b^{=}$tight for \bar{x}, \bar{x} is an extreme point of P if and only if $\operatorname{rank}\left(A^{=}\right)=n$.
15. Claim: Let A be a matrix with linearly independent rows and b be a vector. Let $P=\{x: A x=b, x \geq \mathbb{O}\}$ and let $\bar{x} \in P$. Then \bar{x} is an extreme point of P if and only if \bar{x} is a basic feasible solution of $A x=b$.

