\qquad
First name \qquad

LARSON—OPER 731—CLASSROOM WORKSHEET 07 Linear Programs

Concepts

- (Sec. 2.1) infeasible linear program, certificate of infeasibility, certificate of unboundedness, certificate of optimality.
- (Sec. 2.2) SEF, slack variables.
- (Sec. 2.4) basis, basic variable, nonbasic variable, basic solution, basic feasible solution, canonical form.

Bases and Canonical Forms

1. If A is $m \times n$ and $j \in\{1, \ldots, n\}$, what is A_{j} ? If $J \subseteq\{1, \ldots, n\}$, what is A_{J} ?
2. If $B \subseteq\{1, \ldots, n\}$ when is B a basis for A ? What can we say about A_{B} ? What is N ?
3. What are basic variables x_{j} ? What are nonbasic variables?
4. What is a basic solution of $A x=b$ for a basis B ? (What is a basic feasible solution?)
5. What is the canonical form for an LP with respect to a basis B ?
6. Solve using the simplex method.

1 Consider the LP problem $\max \left\{c^{\top} x: A x=b, x \geq \mathbb{0}\right\}$, where

$$
A=\left(\begin{array}{cccc}
1 & 2 & -2 & 0 \\
0 & 1 & 3 & 1
\end{array}\right) \quad b=\binom{2}{5} \quad c=\left(\begin{array}{l}
0 \\
3 \\
1 \\
0
\end{array}\right)
$$

(a) Beginning with the basis $B=\{1,4\}$, solve the problem with the simplex method. At each step, choose the entering variable and leaving variable by Bland's rule.

Simplex Method Steps

$$
\max \left\{c^{T} x+\bar{z}: A x=b, x \geq \mathbb{O}\right\}
$$

(a) Initialize Find an initial basis and basic feasible solution.
i. Use Gaussian elimination to check if system is feasible and that rows are linearly independent.
ii. For $m \times n \mathrm{~A}$, add add m extra columns for auxiliary system, with easy-tofind basic feasible solution.
iii. We'll have basis B, basic feasible \bar{x} (with $\bar{x}_{N}=\mathbb{O}$), and value of the objective function for \bar{x}.

(b) Put in Canonical Form

i. A_{B} is necessarily invertible. Find A_{B}^{-1}.
ii. The new system is $A_{B}^{-1} A x=A_{B}^{-1} b$ (and the "new A " is $A_{B}^{-1} A$, the "new b " is $A_{B}^{-1} b$, and the "new A_{B} " is I).
iii. Update the objective function so that the "new c " has $c_{B}=0$). Add $0=y^{T} b-y^{T} A x$ to the old/existing objective function, and solve for y (where the "new c_{B} " is \mathbb{O}).
(c) Improve, if possible
i. Is any $c_{k}>0$? If not, then done. The current objective achieves its maximum for \bar{x}.
ii. Let k be the smallest index with $c_{k}>0$ (k will "enter the basis").
iii. Write $b=A_{B} x_{B}+x_{k} A_{k}$, and let $x_{k}=t$. Get $x_{B}=b-t A_{k} \geq \mathbb{O}$, and find the largest possible value for t.
iv. Let r be the corresponding row. Substitute this t into $x_{B}=b-t A_{k}$, to get updated \bar{x} values (we must have $\bar{x}_{r}=0$). Find the value of the objective function for this new \bar{x}.
v. Update the basis. The new basis is $B \backslash\{k\} \cup\{r\}$. For this "new B ", we must have $\bar{x}_{N}=\mathbb{O}$.
(d) Iterate Go back to Step (b).
7. If we have a feasible LP, in SEF, how can we find an initial basis, and initial basic feasible solution?

