Last name	

First name _____

LARSON—OPER 731—CLASSROOM WORKSHEET 07 Linear Programs

Concepts

- (Sec. 2.1) infeasible linear program, certificate of infeasibility, certificate of unboundedness, certificate of optimality.
- (Sec. 2.2) SEF, *slack variables*.
- (Sec. 2.4) basis, basic variable, nonbasic variable, basic solution, basic feasible solution, canonical form.

Bases and Canonical Forms

- 1. If A is $m \times n$ and $j \in \{1, \ldots, n\}$, what is A_j ? If $J \subseteq \{1, \ldots, n\}$, what is A_J ?
- 2. If $B \subseteq \{1, \ldots, n\}$ when is B a basis for A? What can we say about A_B ? What is N?
- 3. What are *basic* variables x_j ? What are *nonbasic* variables?
- 4. What is a *basic solution* of Ax = b for a basis B? (What is a *basic feasible solution*?)
- 5. What is the *canonical form* for an LP with respect to a basis B?
- 6. Solve using the simplex method.
 - **1** Consider the LP problem max{ $c^{T}x : Ax = b, x \ge 0$ }, where

$$A = \begin{pmatrix} 1 & 2 & -2 & 0 \\ 0 & 1 & 3 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \qquad c = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 0 \end{pmatrix}.$$

1.5

(a) Beginning with the basis $B = \{1, 4\}$, solve the problem with the simplex method. At each step, choose the entering variable and leaving variable by Bland's rule.

Simplex Method Steps

$$max\{c^Tx + \bar{z} : Ax = b, x \ge \mathbb{O}\}\$$

- (a) **Initialize** Find an initial basis and basic feasible solution.
 - i. Use Gaussian elimination to check if system is feasible and that rows are linearly independent.
 - ii. For $m \times n$ A, add add m extra columns for auxiliary system, with easy-tofind basic feasible solution.
 - iii. We'll have basis B, basic feasible \bar{x} (with $\bar{x}_N = \mathbb{O}$), and value of the objective function for \bar{x} .

(b) Put in Canonical Form

- i. A_B is necessarily invertible. Find A_B^{-1} .
- ii. The new system is $A_B^{-1}Ax = A_B^{-1}b$ (and the "new A" is $A_B^{-1}A$, the "new b" is $A_B^{-1}b$, and the "new A_B " is I).
- iii. Update the objective function so that the "new c" has $c_B = 0$). Add $0 = y^T b y^T A x$ to the old/existing objective function, and solve for y (where the "new c_B " is \mathbb{O}).

(c) Improve, if possible

- i. Is any $c_k > 0$? If not, then **done**. The current objective achieves its maximum for \bar{x} .
- ii. Let k be the smallest index with $c_k > 0$ (k will "enter the basis").
- iii. Write $b = A_B x_B + x_k A_k$, and let $x_k = t$. Get $x_B = b t A_k \ge \mathbb{O}$, and find the largest possible value for t.
- iv. Let r be the corresponding row. Substitute this t into $x_B = b tA_k$, to get updated \bar{x} values (we must have $\bar{x}_r = 0$). Find the value of the objective function for this new \bar{x} .
- v. Update the basis. The new basis is $B \setminus \{k\} \cup \{r\}$. For this "new B", we must have $\bar{x}_N = \mathbb{O}$.
- (d) **Iterate** Go back to Step (b).
- 7. If we have a feasible LP, in SEF, how can we find an initial basis, and initial basic feasible solution?