Last name	

First name _____

LARSON—OPER 731—CLASSROOM WORKSHEET 06 Linear Programs

Concepts

- (Sec. 2.1) infeasible linear program, certificate of infeasibility, certificate of unboundedness, certificate of optimality.
- (Sec. 2.2) SEF, *slack variables*.
- (Sec. 2.4) basis, basic variable, nonbasic variable, basic solution, basic feasible solution, canonical form.

Bases and Canonical Forms

- 1. If A is $m \times n$ and $j \in \{1, \ldots, n\}$, what is A_j ? If $J \subseteq \{1, \ldots, n\}$, what is A_J ?
- 2. If $B \subseteq \{1, \ldots, n\}$ when is B a basis for A? What can we say about A_B ? What is N?
- 3. What are *basic* variables x_j ? What are *nonbasic* variables?
- 4. What is a *basic solution* of Ax = b for a basis B? (What is a *basic feasible solution*?)
- 5. What is the *canonical form* for an LP with respect to a basis B?
- 6. Consider the following LP in SEF:

max (1, -2, 0, 1, 3)xsubject to

$$\begin{pmatrix} 1 & -1 & 2 & -1 & 0 \\ 2 & 0 & 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

 $x \ge 0.$

- 7. Check that $\{1, 4\}$ is a basis.
- 8. Find an equivalent LP in canonical form.

Simplex Method Steps

$$max\{c^Tx + \bar{z} : Ax = b, x \ge \mathbb{O}\}\$$

- (a) Check that Ax = b has linearly independent rows (using Gaussian elimination).
- (b) Check that Ax = b is feasible by solving the system (using Gaussian elimination) or discovering that the system is infeasible. Assume A is $m \times n$. You'll get m leading 1's. Let B be the indices of those 1's columns. The initial x can be taken to be the solution vector with 0's for all non-B components (so $x_N = \mathbb{O}$).
- (c) We have initial basis B and initial basic feasible solution \bar{x} . Now write Ax = b in canonical form with respect to B:
 - i. On the first pass $A_B = I$ (due to Gaussian elimination). Otherwise leftmultiply Ax = b by A_B^{-1} .
 - ii. Let $y = (y_1, ..., y_m)^T$. Then $y^T A x = y^T b$, and $y^T b y^T A x = \mathbb{O}$. Add this to $c^T x + \overline{z}$ to get and updated objective function.
 - iii. We want y so that our updated objective function has $c_B = 0$. The new objective function is $(c^T x + \bar{z}) + (y^T b y^T A x)$. Solve to get: $c_B^T x_B - y^T A_B x_B = \mathbb{O}$.
- (d) Let c' be the x coefficients in the updated objective function (with $c'_B = \mathbb{O}$). Are any c' entries positive? If not we're done (\hat{x} is optimal). Let k be the smallest index with $c'_k > 0$ (k is necessarily in N). We want to increase \bar{x}_k (which is necessarily 0) to t.
- (e) We'll keep all other \bar{x} components for indices in N equal to 0. So, $b = A_B x_B + x_k A_k = x_B + t A_k$. So $x_B = b - t A_k \ge \mathbb{O}$, and $b \ge t A_k$.
- (f) For each component b_i of b, we must have $\frac{b_i}{A_{ik}}$ (when $A_{ik} \neq 0$). Let $t = \min\{\frac{b_i}{A_{ik}} : i \in B\}.$
- (g) Let r be the smallest index where $t = \frac{b_i}{A_{ik}}$.
- (h) Let the updated feasible solution be \bar{x}' with $\bar{x}' = b tA_k$, $\bar{x}'_k = t$ (and $\bar{x}'_i = 0$ for $i \in N \setminus \{k\}$).
- (i) Remove r from B and add k. So the new basis is $B' = B \setminus \{r\} \cup \{k\}$.
- (j) Add r to N and remove k. So the new nonbasis is $N' = N \setminus \{k\} \cup \{r\}$.
- (k) We now have new basis B', nonbasis N', basic feasible \bar{x}' (with $\bar{x}'_N = \mathbb{O}$), and objective function with x coefficients c' (with $c'_B = \mathbb{O}$).
- 9. Solve.
 - **1** Consider the LP problem max { $c^{T}x$: $Ax = b, x \ge 0$ }, where

$$A = \begin{pmatrix} 1 & 2 & -2 & 0 \\ 0 & 1 & 3 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \qquad c = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 0 \end{pmatrix}.$$

101

(a) Beginning with the basis $B = \{1, 4\}$, solve the problem with the simplex method. At each step, choose the entering variable and leaving variable by Bland's rule.