Last name

\qquad
First name \qquad

LARSON—OPER 731—CLASSROOM WORKSHEET 06 Linear Programs

Concepts

- (Sec. 2.1) infeasible linear program, certificate of infeasibility, certificate of unboundedness, certificate of optimality.
- (Sec. 2.2) SEF, slack variables.
- (Sec. 2.4) basis, basic variable, nonbasic variable, basic solution, basic feasible solution, canonical form.

Bases and Canonical Forms

1. If A is $m \times n$ and $j \in\{1, \ldots, n\}$, what is A_{j} ? If $J \subseteq\{1, \ldots, n\}$, what is A_{J} ?
2. If $B \subseteq\{1, \ldots, n\}$ when is B a basis for A ? What can we say about A_{B} ? What is N ?
3. What are basic variables x_{j} ? What are nonbasic variables?
4. What is a basic solution of $A x=b$ for a basis B ? (What is a basic feasible solution?)
5. What is the canonical form for an LP with respect to a basis B ?
6. Consider the following LP in SEF:
$\max \quad(1,-2,0,1,3) x$
subject to

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & -1 & 2 & -1 & 0 \\
2 & 0 & 1 & -1 & 1
\end{array}\right) x=\binom{1}{-1} \\
& x \geq 0 .
\end{aligned}
$$

7. Check that $\{1,4\}$ is a basis.
8. Find an equivalent LP in canonical form.

Simplex Method Steps

$$
\max \left\{c^{T} x+\bar{z}: A x=b, x \geq \mathbb{O}\right\}
$$

(a) Check that $A x=b$ has linearly independent rows (using Gaussian elimination).
(b) Check that $A x=b$ is feasible by solving the system (using Gaussian elimination) or discovering that the system is infeasible. Assume A is $m \times n$. You'll get m leading 1's. Let B be the indices of those 1's columns. The initial x can be taken to be the solution vector with 0 's for all non- B components (so $x_{N}=\mathbb{O}$).
(c) We have initial basis B and initial basic feasible solution \bar{x}. Now write $A x=b$ in canonical form with respect to B :
i. On the first pass $A_{B}=I$ (due to Gaussian elimination). Otherwise leftmultiply $A x=b$ by A_{B}^{-1}.
ii. Let $y=\left(y_{1}, \ldots, y_{m}\right)^{T}$. Then $y^{T} A x=y^{T} b$, and $y^{T} b-y^{T} A x=\mathbb{O}$. Add this to $c^{T} x+\bar{z}$ to get and updated objective function.
iii. We want y so that our updated objective function has $c_{B}=0$. The new objective function is $\left(c^{T} x+\bar{z}\right)+\left(y^{T} b-y^{T} A x\right)$. Solve to get:
$c_{B}^{T} x_{B}-y^{T} A_{B} x_{B}=\mathbb{O}$.
(d) Let c^{\prime} be the x coefficients in the updated objective function (with $c_{B}^{\prime}=\mathbb{O}$). Are any c^{\prime} entries positive? If not we're done (\hat{x} is optimal). Let k be the smallest index with $c_{k}^{\prime}>0(k$ is necessarily in $N)$. We want to increase \bar{x}_{k} (which is necessarily 0) to t.
(e) We'll keep all other \bar{x} components for indices in N equal to 0 . So, $b=A_{B} x_{B}+x_{k} A_{k}=x_{B}+t A_{k}$. So $x_{B}=b-t A_{k} \geq \mathbb{O}$, and $b \geq t A_{k}$.
(f) For each component b_{i} of b, we must have $\frac{b_{i}}{A_{i k}}$ (when $A_{i k} \neq 0$). Let $t=\min \left\{\frac{b_{i}}{A_{i k}}: i \in B\right\}$.
(g) Let r be the smallest index where $t=\frac{b_{i}}{A_{i k}}$.
(h) Let the updated feasible solution be \bar{x}^{\prime} with $\bar{x}^{\prime}=b-t A_{k}, \bar{x}_{k}^{\prime}=t$ (and $\bar{x}_{i}^{\prime}=0$ for $i \in N \backslash\{k\}$).
(i) Remove r from B and add k. So the new basis is $B^{\prime}=B \backslash\{r\} \cup\{k\}$.
(j) Add r to N and remove k. So the new nonbasis is $N^{\prime}=N \backslash\{k\} \cup\{r\}$.
(k) We now have new basis B^{\prime}, nonbasis N^{\prime}, basic feasible \bar{x}^{\prime} (with $\bar{x}_{N}^{\prime}=\mathbb{O}$), and objective function with x coefficients c^{\prime} (with $\left.c_{B}^{\prime}=\mathbb{O}\right)$.
9. Solve.

1 Consider the LP problem max $\left\{c^{\top} x: A x=b, x \geq \mathbb{O}\right\}$, where

$$
A=\left(\begin{array}{cccc}
1 & 2 & -2 & 0 \\
0 & 1 & 3 & 1
\end{array}\right) \quad b=\binom{2}{5} \quad c=\left(\begin{array}{l}
0 \\
3 \\
1 \\
0
\end{array}\right)
$$

(a) Beginning with the basis $B=\{1,4\}$, solve the problem with the simplex method. At each step, choose the entering variable and leaving variable by Bland's rule.

