Last name

\qquad
First name \qquad

LARSON—MATH 610-HOMEWORK h11
 Gram-Schmidt Example

Given any basis v_{1}, \ldots, v_{n} of \mathbb{R}^{n}, we can construct an orthonormal basis u_{1}, \ldots, u_{n} of \mathbb{R}^{n} (this method applies to any finite-dimensional vector space, but our example will be in \mathbb{R}^{3}).

The method is the following:

1. Let $u_{1}=\frac{1}{\left\|v_{1}\right\|} v_{1}$.
2. After $j-1$ iterations, let $u_{j}^{\prime}=v_{j}-\left\langle v_{j}, u_{1}\right\rangle u_{1}-\ldots-\left\langle v_{j}, u_{j-1}\right\rangle u_{j-1}$.
3. Let $u_{j}=\frac{1}{\left\|u_{j}^{\prime}\right\|} \|_{j}^{\prime}$.
4. Repeat.

Problem

Let $v_{1}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right), v_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

1. Check that v_{1}, v_{2}, v_{3} is a basis for \mathbb{R}^{3}.
2. Apply the Gram-Schmidt method to v_{1}, v_{2}, v_{3} to produce an orthonormal basis u_{1}, u_{2}, u_{3} for \mathbb{R}^{3}. Use the dot product as your inner product for this method. Show all your steps.
3. Check that u_{1}, u_{2}, u_{3} is an orthonormal basis for \mathbb{R}^{3}. What are all the things you need to check?
