Last name _____

First name _____

LARSON—MATH 610—HOMEWORK h11 Gram-Schmidt Example

Given any basis v_1, \ldots, v_n of \mathbb{R}^n , we can *construct* an orthonormal basis u_1, \ldots, u_n of \mathbb{R}^n (this method applies to any finite-dimensional vector space, but our example will be in \mathbb{R}^3).

The method is the following:

- 1. Let $u_1 = \frac{1}{||v_1||} v_1$.
- 2. After j-1 iterations, let $u'_j = v_j \langle v_j, u_1 \rangle u_1 \ldots \langle v_j, u_{j-1} \rangle u_{j-1}$.
- 3. Let $u_j = \frac{1}{||u_j'||} u_j'$.
- 4. Repeat.

Problem

Let
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

- 1. Check that v_1, v_2, v_3 is a basis for \mathbb{R}^3 .
- 2. Apply the Gram-Schmidt method to v_1, v_2, v_3 to produce an orthonormal basis u_1, u_2, u_3 for \mathbb{R}^3 . Use the dot product as your inner product for this method. Show all your steps.
- 3. Check that u_1, u_2, u_3 is an orthonormal basis for \mathbb{R}^3 . What are all the things you need to check?