Last name

\qquad
First name \qquad

LARSON—MATH 610-HOMEWORK h06
 Test 1 Review

Concepts For each concept, give a definition and an example.

1. What is \mathbb{R}^{∞} ?
2. What is a subspace of a vector space V ?
3. What is $U_{1} \oplus U_{2}$ for subspaces U_{1}, U_{2} of a vector space V ?
4. What is a linear combination of vectors v_{1}, \ldots, v_{m} (over a field \mathbb{F})?
5. What is the span of vectors v_{1}, \ldots, v_{m} (over a field \mathbb{F})?
6. What is a linearly independent list of vectors?
7. What is a linearly dependent list of vectors?
8. What is a basis of a vector space?
9. What is the dimension of a finite-dimensional vector space?
10. What is a linear map?
11. What is $\mathcal{L}(V, W)$?
12. Let $T \in \mathcal{L}(V, W)$. What is the null space of T ?
13. What is a vector space isomorphism?
14. What is an eigenvalue of $T \in \mathcal{L}(V)$?
15. What is an eigenvector of $T \in \mathcal{L}(V)$?

Theorems. State (if needed), and provide a proof.
16. (Basis Criterion). A list $v_{1} \ldots ; v_{n}$ of vectors in a vector space V is a basis of V if and only if every $v \in V$ can be written uniquely in the form $v=a_{1} v_{1}+\ldots+a_{n} v_{n}\left(a_{i} \in \mathbb{F}\right)$.
17. (Linearly independent list extends to a basis). Every linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis of the vector space.
18. (Linear map lemma.) If v_{1}, \ldots, v_{n} is a basis for vector space V and w_{1}, \ldots, w_{n} is a basis for vector space W then there is a unique linear map $T: V \rightarrow W$ with $T v_{i}=w_{i}$.
19. Rank-Nullity Theorem.
20. Linearly independent eigenvectors: Suppose $T \in \mathcal{L}(V)$. Every list of eigenvectors of T corresponding to distinct eigenvalues is linearly independent.

Problems Explain everything. As scientists it is never enough to write answers. They must be communicated-convincingly - to others.
21. Show: \mathbb{R}^{∞} is a vector space.
22. Show: The span of vectors v_{1}, \ldots, v_{m} in V is a subspace of V ?
23. Let $T \in \mathcal{L}(V, W)$. Show: null T is a subspace of V.
24. Let $T \in \mathcal{L}(V, W)$. Show: T is injective if and only if null $T=\{0\}$.
25. For $T \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$ with $T(x, y)=(x+3 y, 2 x+5 y, 7 x+9 y)$, find $\mathcal{M}(T)$.
26. Show: For vector spaces V, W, U, and linear maps $S: U \rightarrow V$ and $T: V \rightarrow W$, define $T S$ and show that it is linear.
27. Show: λ is an eigenvalue of T if and only if $T-\lambda I$ is not injective.
28. Suppose $T \in \mathcal{L}\left(\mathbb{R}^{2}\right)$, with $T(z, w)=(w, z)$. Find all eigenvalues and eigenvectors of T.
29. Suppose $P \in \mathcal{L}(V)$, with $P^{2}=P$ and λ is an eigenvalue of P. Show: λ is 0 or 1 .

