\qquad
First name \qquad

LARSON—MATH 610-CLASSROOM WORKSHEET 25 Adjoint Operators.

Concepts \& Notation

- (Chp. 6) dot product, inner product, inner product space, norm, orthogonal representation, Cauchy-Schwartz, orthonormal list, Gram-Schmidt, orthogonal complement, orthogonal projection.
- (Chp. 7) adjoint, conjugate transpose.

1. What is a linear functional?
2. What is the Riesz Representation Theorem?
3. Let V, W be finite-dimensional inner product spaces and $T \in \mathcal{L}(V, W)$. What is the adjoint T^{*} of T ? Why does the adjoint exist?
4. (Claim) The adjoint of a linear map on an inner product space is linear.

7.7 Null space and range of T^{*}

Suppose $T \in \mathcal{L}(V, W)$. Then
(a) null $T^{*}=(\operatorname{range} T)^{\perp}$;
(b) \quad range $T^{*}=(\operatorname{null} T)^{\perp}$;
(c) $\quad \operatorname{null} T=\left(\text { range } T^{*}\right)^{\perp}$;
(d) \quad range $T=\left(\text { null } T^{*}\right)^{\perp}$.
6. What is the conjugate transpose A^{*} of an $m \times n$ matrix?
7. (Claim) If V, W are finite-dimensional inner-product spaces with orthonormal bases e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{m} and $T \in \mathcal{L}(V, W)$, then the matrix of T^{*} equals the conjugate transpose of the matrix of T.
8. What is a self-adjoint linear operator (on an inner product space)?
9. (Claim) Eigenvalues of self-adjoint operators are real.

