Last name	

First name _____

LARSON—MATH 610—CLASSROOM WORKSHEET 25 Adjoint Operators.

Concepts & Notation

- (Chp. 6) dot product, inner product, inner product space, norm, orthogonal representation, Cauchy-Schwartz, orthonormal list, Gram-Schmidt, orthogonal complement, orthogonal projection.
- (Chp. 7) adjoint, conjugate transpose.
- 1. What is a *linear functional*?
- 2. What is the *Riesz Representation Theorem*?
- 3. Let V, W be finite-dimensional inner product spaces and $T \in \mathcal{L}(V, W)$. What is the *adjoint* T^* of T? Why does the adjoint exist?
- 4. (Claim) The adjoint of a linear map on an inner product space is linear.

7.7 Null space and range of T^*

Suppose $T \in \mathcal{L}(V, W)$. Then

- (a) null $T^* = (\operatorname{range} T)^{\perp}$;
- (b) range $T^* = (\operatorname{null} T)^{\perp}$;
- (c) null $T = (\text{range } T^*)^{\perp};$
- (d) range $T = (\operatorname{null} T^*)^{\perp}$.

5.

6. What is the *conjugate transpose* A^* of an $m \times n$ matrix?

7. (Claim) If V, W are finite-dimensional inner-product spaces with orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_m and $T \in \mathcal{L}(V, W)$, then the matrix of T^* equals the conjugate transpose of the matrix of T.

8. What is a *self-adjoint* linear operator (on an inner product space)?

9. (Claim) Eigenvalues of self-adjoint operators are real.