\qquad
First name \qquad

LARSON—MATH 610-CLASSROOM WORKSHEET 23 Projections in Inner Product Spaces.

Concepts \& Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector, Cayley-Hamilton Theorem.
- (Chp. 6) dot product, inner product, inner product space, norm, orthogonal representation, Cauchy-Schwartz, orthonormal list, Gram-Schmidt, orthogonal projection.

1. What is the orthogonal complement of a set U in an inner product space V ?
2. For a subspace U of an inner product space V, what is the orthogonal projection operator P_{U} ?

6.55 Properties of the orthogonal projection P_{U}

Suppose U is a finite-dimensional subspace of V and $v \in V$. Then
(a) $\quad P_{U} \in \mathcal{L}(V)$;
(b) $\quad P_{U} u=u$ for every $u \in U$;
(c) $\quad P_{U} w=0$ for every $w \in U^{\perp}$;
(d) range $P_{U}=U$;
(e) null $P_{U}=U^{\perp}$;
(f) $\quad v-P_{U} v \in U^{\perp}$;
(g) $\quad P_{U}^{2}=P_{U}$;
(h) $\quad\left\|P_{U} v\right\| \leq\|v\|$;
(i) for every orthonormal basis e_{1}, \ldots, e_{m} of U,

$$
P_{U} v=\left\langle v, e_{1}\right\rangle e_{1}+\cdots+\left\langle v, e_{m}\right\rangle e_{m}
$$

4. (Minimizing the distance to a subspace) Suppose U is a finite-dimensional subspace of $V, v \in V$, and $u \in U$. Then $\left\|v-P_{U} v\right\| \leq\|v-u\|$. Furthermore, the inequality above is an equality if and only if $u=P_{U} v$.

Linear Functionals and Riesz Representation Theorem

5. What is a linear functional?
6. What is the Riesz Representation Theorem?

Adjoint Operators

7. Let V, W be finite-dimensional inner product spaces and $T \in \mathcal{L}(V, W)$. What is the adjoint T^{*} of T ?
8. Why does the adjoint exist?
