Last name	

First name _____

LARSON—MATH 610—CLASSROOM WORKSHEET 23 Projections in Inner Product Spaces.

Concepts & Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector, Cayley-Hamilton Theorem.
- (Chp. 6) dot product, inner product, inner product space, norm, orthogonal representation, Cauchy-Schwartz, orthonormal list, Gram-Schmidt, orthogonal projection.
- 1. What is the *orthogonal complement* of a set U in an inner product space V?
- 2. For a subspace U of an inner product space V, what is the orthogonal projection operator P_U ?

6.55 Properties of the orthogonal projection P_U

Suppose U is a finite-dimensional subspace of V and $v \in V$. Then

- (a) $P_U \in \mathcal{L}(V)$;
- (b) $P_U u = u$ for every $u \in U$;
- (c) $P_U w = 0$ for every $w \in U^{\perp}$;
- (d) range $P_U = U$;
- (e) null $P_U = U^{\perp}$;
- (f) $v P_U v \in U^{\perp};$
- (g) $P_U^2 = P_U;$
- (h) $||P_U v|| \le ||v||;$
- (i) for every orthonormal basis e_1, \ldots, e_m of U,

$$P_U v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

3.

4. (Minimizing the distance to a subspace) Suppose U is a finite-dimensional subspace of $V, v \in V$, and $u \in U$. Then $||v - P_U v|| \leq ||v - u||$. Furthermore, the inequality above is an equality if and only if $u = P_U v$.

Linear Functionals and Riesz Representation Theorem

5. What is a *linear functional*?

6. What is the *Riesz Representation Theorem*?

Adjoint Operators

7. Let V, W be finite-dimensional inner product spaces and $T \in \mathcal{L}(V, W)$. What is the *adjoint* T^* of T?

8. Why does the adjoint exist?