## Last name

$\qquad$
First name $\qquad$

## LARSON—MATH 610-CLASSROOM WORKSHEET 20 <br> Inner product Spaces.

## Concepts \& Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector, Cayley-Hamilton Theorem.
- (Chp. 6) dot product, inner product, inner product space, norm.


## Inner Product Spaces

1. What is the orthogonal representation of vectors $u, v$ in an inner product space?
2. What is the Pythagorean Theorem for an inner product space?
3. What is the Cauchy-Schwartz Inequality in a inner product space?
4. What is an orthonormal list of vectors in an inner product space?
5. (Claim) An orthonormal list of vectors in an inner product space is linearly independent.
6. If $\left(e_{1}, \ldots, e_{m}\right)$ is an orthonormal list in an inner product space $V$ (over $\mathbb{F}$ ) and $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ then $\left\|\alpha_{1} e_{1}+\ldots \alpha_{m} e_{m}\right\|^{2}=\left|\alpha_{1}\right|^{2}+\ldots+\left|\alpha_{m}\right|^{2}$.
7. What is an orthonormal basis in an inner product space?
8. If $e_{1}, \ldots, e_{n}$ is an orthonormal basis for an inner product space $V$, and $v \in V$, then

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}
$$

and

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\ldots+\left|\left\langle v, e_{n}\right\rangle\right|^{2} .
$$

9. What is the Gram-Schmidt procedure?
10. (Existence of orthonormal basis) Every finite-dimensional inner product space has an orthonormal basis.
11. (Orthonormal list extends to orthonormal basis) Suppose $V$ is finite-dimensional. Then every orthonormal list of vectors in $V$ can be extended to an orthonormal basis of $V$.
12. (Upper-triangular matrix with respect to orthonormal basis) Suppose $T \in$ $\mathcal{L}(V)$ has an upper-triangular matrix with respect to some basis of $V$, then $T$ has an upper-triangular matrix with respect to some orthonormal basis of $V$.
