\qquad
First name \qquad

LARSON—MATH 610-CLASSROOM WORKSHEET 19 Inner product Spaces.

Concepts \& Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector, Cayley-Hamilton Theorem.
- (Chp. 6) dot product, inner product, inner product space, norm.

Inner Product Spaces

1. What is an inner product in a vector space?
2. What is an inner product space?
3. Let V be an inner product space, and $v \in V$. Check that $\langle 0, v\rangle=0$ and $\langle v, 0\rangle=0$.
4. Let V be an inner product space, and $u, v \in V$. Check that $\langle u, \alpha v\rangle=\bar{\alpha}\langle u, v\rangle$.
5. Let V be an inner product space, and $u, v, w \in V$. Check that $\langle u, v+w\rangle=\langle u, v\rangle+$ $\langle u, w\rangle$.
6. Let V be an inner product space, what is the norm of $v \in V$?
7. Let V be an inner product space. What does it mean for vectors $u, v \in V$ to be orthogonal?
8. What is the orthogonal representation of vectors u, v in an inner product space?
9. What is the Pythagorean Theorem for an inner product space?
10. What is the Cauchy-Schwartz Inequality in a inner product space?
11. What is an orthonormal list of vectors in an inner product space?
12. (Claim) An orthonormal list of vectors in an inner product space is linearly independent.
13. If $\left(e_{1}, \ldots, e_{m}\right)$ is an orthonormal list in an inner product space V (over \mathbb{F}) and $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ then $\left\|\alpha_{1} e_{1}+\ldots \alpha_{m} e_{m}\right\|^{2}=\left|\alpha_{1}\right|^{2}+\ldots+\left|\alpha_{m}\right|^{2}$.
14. What is an orthonormal basis in an inner product space?
15. If e_{1}, \ldots, e_{n} is an orthonormal basis for an inner product space V, and $v \in V$, then

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n},
$$

and

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\ldots+\left|\left\langle v, e_{n}\right\rangle\right|^{2}
$$

