Last name _____

First name _____

LARSON—MATH 610—CLASSROOM WORKSHEET 19 Inner product Spaces.

Concepts & Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector, Cayley-Hamilton Theorem.
- (Chp. 6) dot product, inner product, inner product space, norm.

Inner Product Spaces

- 1. What is an *inner product* in a vector space?
- 2. What is an *inner product space*?
- 3. Let V be an inner product space, and $v \in V$. Check that $\langle 0, v \rangle = 0$ and $\langle v, 0 \rangle = 0$.
- 4. Let V be an inner product space, and $u, v \in V$. Check that $\langle u, \alpha v \rangle = \overline{\alpha} \langle u, v \rangle$.
- 5. Let V be an inner product space, and $u, v, w \in V$. Check that $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$.
- 6. Let V be an inner product space, what is the norm of $v \in V$?
- 7. Let V be an inner product space. What does it mean for vectors $u, v \in V$ to be *orthogonal*?
- 8. What is the orthogonal representation of vectors u, v in an inner product space?

9. What is the *Pythagorean Theorem* for an inner product space?

10. What is the *Cauchy-Schwartz Inequality* in a inner product space?

11. What is an *orthonormal list* of vectors in an inner product space?

12. (Claim) An orthonormal list of vectors in an inner product space is linearly independent.

13. If (e_1, \ldots, e_m) is an orthonormal list in an inner product space V (over \mathbb{F}) and $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$ then $||\alpha_1 e_1 + \ldots + \alpha_m e_m||^2 = |\alpha_1|^2 + \ldots + |\alpha_m|^2$.

14. What is an *orthonormal basis* in an inner product space?

15. If e_1, \ldots, e_n is an orthonormal basis for an inner product space V, and $v \in V$, then

$$v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_n \rangle e_n,$$

and

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \ldots + |\langle v, e_n \rangle|^2.$$