Last name

\qquad
First name \qquad

LARSON—MATH 610-CLASSROOM WORKSHEET 18 Inner product Spaces.

Concepts \& Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector, Cayley-Hamilton Theorem.
- (Chp. 6) dot product, inner product, inner product space.

Inner Product Spaces

1 . What is the dot product of vectors in \mathbb{R}^{n} ?
2. What is an inner product in a vector space?
3. Check that the dot product in \mathbb{R}^{2} is an inner product.
4. What is an inner product space?
5. Let V be an inner product space, and $v \in V$. Check that $\langle 0, v\rangle=0$ and $\langle v, 0\rangle=0$.
6. Let V be an inner product space, and $u, v \in V$. Check that $\langle u, \alpha v\rangle=\bar{\alpha}\langle u, v\rangle$.
7. Let V be an inner product space, and $u, v, w \in V$. Check that $\langle u, v+w\rangle=\langle u, v\rangle+$ $\langle u, w\rangle$.
8. Let V be an inner product space, what is the norm of $v \in V$?
9. Let V be an inner product space. What does it mean for vectors $u, v \in V$ to be orthogonal?
10. What is the orthogonal representation of vectors u, v in an inner product space?
11. What is the Pythagorean Theorem for an inner product space?
12. What is the Cauchy-Schwartz Inequality in a inner product space?

