Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 17 Generalized Eigenvectors.

Concepts & Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector.

Complex Vector Spaces

Let V be a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$, with eigenvalues $\lambda_1, \ldots, \lambda_k$, generalized eigenspaces G_1, \ldots, G_k , with $d_i = \dim G_i$.

- 1. Generalized eigenvectors corresponding to distinct eigenvalues are linearly independent.
- 2. There is a basis of V consisting of generalized eigenvectors of T.
- 3. $V = G_1 \oplus \ldots \oplus G_k$.
- 4. $d_1 + \ldots + d_k = dim(V)$.
- 5. (Def.) The **characteristic polynomial** of T is $q(x) = (x \lambda_1)^{d_1} \dots (x \lambda_k)^{d_k}$.
- 6. (Cayley-Hamilton Theorem). q(T) = 0.
- 7. The minimal polynomial of T divides the characteristic polynomial of T.

Our Example

- 1. Suppose $T: \mathbb{C}^3 \to \mathbb{C}^3$, with $T(x_1, x_2, x_3) = (4x_1, 0, 5x_2)$. Find all eigenvalues and associated eigenvectors.
- 2. Find the eigenspaces corresponding to the eigenvalues of T and check that they do not sum to \mathbb{C}^3 .
- 3. What is a generalized eigenvector?
- 4. Find the generalized eigenvectors for $T: \mathbb{C}^3 \to \mathbb{C}^3$, with $T(x_1, x_2, x_3) = (4x_1, 0, 5x_2)$.
- 5. For each eigenvalue λ of T find the corresponding set G_{λ} of generalized eigenvectors of T.

C	Charry that	thoma is a	basis of C3	consisting o	f man analigad	ai manara at ana	$_{\circ}$ f T
υ.	Show that	there is a	Dasis of C	consisting o	ı generanzed	eigenvectors	or I .

- 8. Check that the generalized eigenspaces G_i are invariant under T.
- 9. For eigenvalues $\lambda_1, \ldots, \lambda_k$ of T, and generalized eigenspaces G_1, \ldots, G_k , let $d_i = \dim G_i$ (d_i is the multiplicity of λ_i). Check that $d_1 = \ldots + d_k = \dim(\mathbb{C}^3)$.
- 10. Find the characteristic polynomial $q(x) = (x \lambda_1)^{d_1} \dots (x \lambda_k)^{d_k}$.
- 11. Check that q(T) = 0.

12. Explain why the minimal polynomial p(x) of T must divide the characteristic polynomial q(x) of T. Use this fact and other facts we proved to make conclusions about the minimal polynomial of T.

Inner Product Spaces

13. What is the *dot product* of vectors in \mathbb{R}^n ?

14. What is an *inner product* in a vector space? Check that the dot product in \mathbb{R}^2 is an inner product.

^{7.} Show that \mathbb{C}^3 is a direct sum of the generalized eigenspaces corresponding to the eigenvalues of T.