Last name	

First name _____

LARSON—MATH 610—CLASSROOM WORKSHEET 16 Generalized Eigenvectors.

Concepts & Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector.

Complex Vector Spaces

- 1. Suppose $T : \mathbb{C}^3 \to \mathbb{C}^3$, with $T(x_1, x_2, x_3) = (4x_1, 0, 5x_2)$. Find all eigenvalues and associated eigenvectors.
- 2. Find the eigenspaces corresponding to the eigenvalues of T and check that they do not sum to \mathbb{C}^3 .

3. What is a generalized eigenvector?

4. Find the generalized eigenvectors for $T: \mathbb{C}^3 \to \mathbb{C}^3$, with $T(x_1, x_2, x_3) = (4x_1, 0, 5x_2)$.

5. For each eigenvalue λ of T find the corresponding set G_{λ} of generalized eigenvectors of T.

- 6. Show that there is a basis of \mathbb{C}^3 consisting of generalized eigenvectors of T.
- 7. Show that \mathbb{C}^3 is a direct sum of the generalized eigenspaces corresponding to the eigenvalues of T.
- 8. Check that the generalized eigenspaces G_i are invariant under T.
- 9. For eigenvalues $\lambda_1, \ldots, \lambda_k$ of T, and generalized eigenspaces G_1, \ldots, G_k , let $d_i = \dim G_i$ (d_i is the multiplicity of λ_i). Check that $d_1 = \ldots + d_k = \dim(\mathbb{C}^3)$.
- 10. Find the characteristic polynomial $q(x) = (x \lambda_1)^{d_1} \dots (x \lambda_k)^{d_k}$.

11. Check that q(T) = 0.

12. Explain why the minimal polynomial p(x) of T must divide the characteristic polynomial q(x) of T. Use this fact and other facts we proved to make conclusions about the minimal polynomial of T.