\qquad
First name \qquad

LARSON—MATH 610-CLASSROOM WORKSHEET 16 Generalized Eigenvectors.

Concepts \& Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector.

Complex Vector Spaces

1. Suppose $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$, with $T\left(x_{1}, x_{2}, x_{3}\right)=\left(4 x_{1}, 0,5 x_{2}\right)$. Find all eigenvalues and associated eigenvectors.
2. Find the eigenspaces corresponding to the eigenvalues of T and check that they do not sum to \mathbb{C}^{3}.
3. What is a generalized eigenvector?
4. Find the generalized eigenvectors for $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$, with $T\left(x_{1}, x_{2}, x_{3}\right)=\left(4 x_{1}, 0,5 x_{2}\right)$.
5. For each eigenvalue λ of T find the corresponding set G_{λ} of generalized eigenvectors of T.
6. Show that there is a basis of \mathbb{C}^{3} consisting of generalized eigenvectors of T.
7. Show that \mathbb{C}^{3} is a direct sum of the generalized eigenspaces corresponding to the eigenvalues of T.
8. Check that the generalized eigenspaces G_{i} are invariant under T.
9. For eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ of T, and generalized eigenspaces G_{1}, \ldots, G_{k}, let $d_{i}=\operatorname{dim} G_{i}\left(d_{i}\right.$ is the multiplicity of $\left.\lambda_{i}\right)$. Check that $d_{1}=\ldots+d_{k}=\operatorname{dim}\left(\mathbb{C}^{3}\right)$.
10. Find the characteristic polynomial $q(x)=\left(x-\lambda_{1}\right)^{d_{1}} \ldots\left(x-\lambda_{k}\right)^{d_{k}}$.
11. Check that $q(T)=0$.
12. Explain why the minimal polynomial $p(x)$ of T must divide the characteristic polynomial $q(x)$ of T. Use this fact and other facts we proved to make conclusions about the minimal polynomial of T.
