Last name _____

First name _____

LARSON—MATH 610—CLASSROOM WORKSHEET 15 Invariant Subspaces, Upper-Triangular Matrices, and Generalized Eigenvectors.

Concepts & Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector.

Minimal Polynomials

- 1. (Existence, uniqueness, and degree of minimal polynomial). If V is a finitedimensional vector space, and $T \in \mathcal{L}(V)$, then there is a unique monic polynomial $p \in \mathcal{P}(\mathbb{F})$ of smallest degree with p(T) = 0.
- 2. Suppose V is a finite-dimensional complex vector space, $T \in \mathcal{L}(V)$ and p(T) is the minimal polynomial. Then the roots of p are exactly the eigenvalues of T.

Invariant Subspaces and Upper-Triangular Matrices

- 3. What is an *invariant subspace* of $T \in \mathcal{L}(V)$?
- 4. (Claim:) Suppose $T \in \mathcal{L}(V)$ and (v_1, \ldots, v_n) is a basis of V. Then the following are equivalent:
 - (a) the matrix of T with respect to (v_1, \ldots, v_n) is upper-triangular;
 - (b) $T(v_k) \in span(v_1, \ldots, v_k)$ for each $k = 1, \ldots, n$;
 - (c) $span(v_1, \ldots, v_k)$ is invariant under T for each $k = 1, \ldots, n$.

5. (Claim:) Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then T has an upper-triangular matrix with respect to some basis of V.

Complex Vector Spaces

6. Suppose $T : \mathbb{R}^3 \to \mathbb{R}^3$, with $T(x_1, x_2, x_3) = (4x_1, 0, 5x_2)$. Find all eigenvalues and associated eigenvectors.

7. What is a generalized eigenvector?

8. Find the generalized eigenvectors for $T : \mathbb{R}^3 \to \mathbb{R}^3$, with $T(x_1, x_2, x_3) = (4x_1, 0, 5x_2)$.