\qquad
First name \qquad

LARSON—MATH 610-CLASSROOM WORKSHEET 14

Minimal Polynomials, Invariant Subspaces, and Upper-Triangular Matrices.

Concepts \& Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector.

1. (Claim:) Every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue.

Minimal Polynomials

2. (Existence, uniqueness, and degree of minimal polynomial). If V is a finitedimensional vector space, and $T \in \mathcal{L}(V)$, then there is a unique monic polynomial $p \in \mathcal{P}(\mathbb{F})$ of smallest degree with $p(T)=0$.
3. What is the minimal polynomial of $T \in \mathcal{L}(V)$ (for finite-dimensional V)?
4. Suppose V is a finite-dimensional complex vector space, $T \in \mathcal{L}(V)$ and $p(T)$ is the minimal polynomial. Then the roots of p are exactly the eigenvalues of T.

Invariant Subspaces and Upper-Triangular Matrices

5. What is an invariant subspace of $T \in \mathcal{L}(V)$?
6. For $T \in \mathcal{L}(V)$ the eigenspace $U=\{v: T(v)=\lambda v\}$ corresponding to an eigenvalue λ of T is an invariant subspace of T.
7. (Claim:) Suppose $T \in \mathcal{L}(V)$ and $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of V. Then the following are equivalent:
(a) the matrix of T with respect to $\left(v_{1}, \ldots, v_{n}\right)$ is upper-triangular;
(b) $T\left(v_{k}\right) \in \operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ for each $k=1, \ldots, n$;
(c) $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ is invariant under T for each $k=1, \ldots, n$.
8. (Claim:) Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then T has an upper-triangular matrix with respect to some basis of V.

Complex Vector Spaces

9. What is a generalized eigenvector?
