Last name	

First name _____

LARSON—MATH 610—CLASSROOM WORKSHEET 13 Eigenvalues and Eigenvectors.

Concepts & Notation

- (Chp. 1) field \mathbb{F} , list, vector space, \mathbb{F}^n , \mathbb{F}^S , \mathbb{F}^∞ , subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence, basis.
- (Chp. 3) linear map, null space, range, injective, surjective, invertible, isomorphism, , isomorphism.
- (Chp. 4) polynomial, root.
- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial.

Eigenvalues and Eigenvectors

- 1. Linearly independent eigenvectors: Suppose $T \in \mathcal{L}(V)$. Every list of eigenvectors of T corresponding to distinct eigenvalues is linearly independent.
- 2. (Claim:) A finite-dimensional vector space V has at most dim V eigenvalues.
- 3. If $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$, what is p(T)?
- 4. (Claim:) Every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue.
- 5. (Existence, uniqueness, and degree of minimal polynomial). If V is a finitedimensional vector space, and $T \in \mathcal{L}(V)$, then there is a unique monic polynomial $p \in \mathcal{P}(\mathbb{F})$ of smallest degree with p(T) = 0.

6. What is the minimal polynomial of $T \in \mathcal{L}(V)$ (for finite-dimensional V)?

7. What is an *invariant subspace* of $T \in \mathcal{L}(V)$?

8. For $T \in \mathcal{L}(V)$ the eigenspace $U = \{v : T(v) = \lambda v\}$ corresponding to an eigenvalue λ of T is an invariant subspace of T.

- 9. (Claim:) Suppose $T \in \mathcal{L}(V)$ and (v_1, \ldots, v_n) is a basis of V. Then the following are equivalent:
 - (a) the matrix of T with respect to (v_1, \ldots, v_n) is upper-triangular;
 - (b) $T(v_k) \in span(v_1, \ldots, v_k)$ for each $k = 1, \ldots, n$;
 - (c) $span(v_1, \ldots, v_k)$ is invariant under T for each $k = 1, \ldots, n$.

10. (Claim:) Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then T has an upper-triangular matrix with respect to some basis of V.