\qquad
First name \qquad

LARSON—MATH 610-CLASSROOM WORKSHEET 13 Eigenvalues and Eigenvectors.

Concepts \& Notation

- (Chp. 1) field \mathbb{F}, list, vector space, $\mathbb{F}^{n}, \mathbb{F}^{S}, \mathbb{F}^{\infty}$, subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence, basis.
- (Chp. 3) linear map, null space, range, injective, surjective, invertible, isomorphism, , isomorphism.
- (Chp. 4) polynomial, root.
- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial.

Eigenvalues and Eigenvectors

1. Linearly independent eigenvectors: Suppose $T \in \mathcal{L}(V)$. Every list of eigenvectors of T corresponding to distinct eigenvalues is linearly independent.
2. (Claim:) A finite-dimensional vector space V has at most $\operatorname{dim} V$ eigenvalues.
3. If $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$, what is $p(T)$?
4. (Claim:) Every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue.
5. (Existence, uniqueness, and degree of minimal polynomial). If V is a finitedimensional vector space, and $T \in \mathcal{L}(V)$, then there is a unique monic polynomial $p \in \mathcal{P}(\mathbb{F})$ of smallest degree with $p(T)=0$.
6. What is the minimal polynomial of $T \in \mathcal{L}(V)$ (for finite-dimensional V)?
7. What is an invariant subspace of $T \in \mathcal{L}(V)$?
8. For $T \in \mathcal{L}(V)$ the eigenspace $U=\{v: T(v)=\lambda v\}$ corresponding to an eigenvalue λ of T is an invariant subspace of T.
9. (Claim:) Suppose $T \in \mathcal{L}(V)$ and $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of V. Then the following are equivalent:
(a) the matrix of T with respect to $\left(v_{1}, \ldots, v_{n}\right)$ is upper-triangular;
(b) $T\left(v_{k}\right) \in \operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ for each $k=1, \ldots, n$;
(c) $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ is invariant under T for each $k=1, \ldots, n$.
10. (Claim:) Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then T has an upper-triangular matrix with respect to some basis of V.
