Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 12 Eigenvalues and Eigenvectors.

Concepts & Notation

- (Chp. 1) field \mathbb{F} , list, vector space, \mathbb{F}^n , \mathbb{F}^S , \mathbb{F}^{∞} , subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence, basis.
- (Chp. 3) linear map, null space, range, injective, surjective, invertible, isomorphism, isomorphism.
- (Chp. 4) polynomial, root.
- (Chp. 5) eigenvalue, eigenvector, invariant subspace.

Eigenvalues and Eigenvectors

- 1. What is an eigenvalue of $T \in \mathcal{L}(V)$?
- 2. (Claim:) λ is an eigenvalue of T if and only if $T \lambda I$ is not injective.
- 3. What is an eigenvector of $T \in \mathcal{L}(V)$?
- 4. (Claim:) The set of eigenvectors corresponding to an eigenvalue of a linear operator $T \in \mathcal{L}(V)$ is $null(T \lambda I)$ (and thus is a subspace of V).
- 5. Find the eigenvalues and eigenvectors for $T \in \mathcal{L}(\mathbb{R}^2)$ defined by T(w,z) = (-z,w).

6. Linearly independent eigenvectors: Suppose $T \in \mathcal{L}(V)$. Every list of eigenvectors of T corresponding to distinct eigenvalues is linearly independent.

7.	(Claim:) A finite-dimensional vector space V has at most $\dim V$ eigenvalues.
8.	If $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$, what is $p(T)$?
9.	$({\bf Claim}:)$ Every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue.
10.	What is an invariant subspace of $T \in \mathcal{L}(V)$?
11.	For $T \in \mathcal{L}(V)$ the eigenspace $U = \{v : T(v) = \lambda v\}$ corresponding to an eigenvalue λ of T is an invariant subspace of T .
12.	(Claim:) Suppose $T \in \mathcal{L}(V)$ and (v_1, \ldots, v_n) is a basis of V . Then the following are equivalent: (a) the matrix of T with respect to (v_1, \ldots, v_n) is upper-triangular; (b) $T(v_k) \in span(v_1, \ldots, v_k)$ for each $k = 1, \ldots, n$; (c) $span(v_1, \ldots, v_k)$ is invariant under T for each $k = 1, \ldots, n$.