Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 11 Polynomials and Eigenvalues.

Concepts & Notation

- (Chp. 1) field \mathbb{F} , list, vector space, \mathbb{F}^n , \mathbb{F}^S , \mathbb{F}^{∞} , subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence, basis.
- (Chp. 3) linear map, null space, range, injective, surjective, invertible, isomorphism, isomorphism.
- (Chp. 4) polynomial, root.
- (Chp. 5) eigenvalue, eigenvector.

Polynomials

- 1. Claim: For polynomial $p \in \mathcal{P}(\mathbb{F})$ with degree $m \geq 1$, λ is a root of p if and only if there is a $q \in \mathcal{P}(\mathbb{F})$ with degree m-1 such that $p(z) = (z-\lambda)q(z)$ for every $z \in \mathbb{F}$.
- 2. **Division Algorithm**: If $p, q \in \mathcal{P}(\mathbb{F})$, $p \neq 0$, there are polynomials $s, r \in \mathcal{P}(\mathbb{F})$ such that q = sp + r and $deg \ r < deg \ p$.
- 3. Claim: If $\lambda \in \mathbb{C}$ is a root of $p \in \mathbb{R}$ then so is $\bar{\lambda}$.
- 4. Claim: If $p \in \mathcal{P}(\mathbb{R})$ then p has a unique factorization:

$$p(x) = c(x - \lambda_1) \dots (x - \lambda_m)(x^2 + \alpha_1 x + \beta_1) \dots (x^2 + \alpha_M x + \beta_M).$$
 with $\alpha_j^2 < 4\beta_j$.

Eigenvalues and Eigenvectors

5. What is an eigenvalue of $T \in \mathcal{L}(V)$?

