Last name	

First name _____

LARSON—MATH 610—CLASSROOM WORKSHEET 10 Polynomials and Eigenvalues.

Concepts & Notation

- (Chp. 1) field \mathbb{F} , list, vector space, \mathbb{F}^n , \mathbb{F}^S , \mathbb{F}^∞ , subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence, basis.
- (Chp. 3) linear map, null space, range, injective, surjective, invertible, isomorphism, , isomorphism.
- (Chp. 4) polynomial, root.
- (Chp. 5) eigenvalue.

Polynomials!

- 1. What is a root λ of a polynomial $p \in \mathcal{P}(\mathbb{F})$?
- 2. What is the Fundamental Theorem of Algebra?
- 3. What is the *degree* of a polynomial $p \in \mathcal{P}(\mathbb{F})$?
- 4. Claim: For polynomial $p \in \mathcal{P}(\mathbb{F})$ with degree $m \ge 1$, λ is a root of p if and only if there is a $q \in \mathcal{P}(\mathbb{F})$ with degree m 1 such that $p(z) = (z \lambda)q(z)$ for every $z \in \mathbb{F}$.
- 5. Division Algorithm: If $p, q \in \mathcal{P}(\mathbb{F}), p \neq 0$, there are polynomials $s, r \in \mathcal{P}(\mathbb{F})$ such that q = sp + r and $deg \ r < deg \ p$.
- 6. Notation: If $z \in \mathbb{C}$, what is: Re(z), Im(z)? What is \overline{z} ?
- 7. Claim: If $\lambda \in \mathbb{C}$ is a root of $p \in \mathbb{R}$ then so is $\overline{\lambda}$.

8. **Claim**: If $p \in \mathcal{P}(\mathbb{R})$ then p has a unique factorization:

$$p(x) = c(x - \lambda_1) \dots (x - \lambda_m)(x^2 + \alpha_1 x + \beta_1) \dots (x^2 + \alpha_M x + \beta_M)$$

with $\alpha_j^2 < 4\beta_j$.

Eigenvalues and Eigenvectors

- 9. What is an *eigenvalue* of $T \in \mathcal{L}(V)$?
- 10. What is an example of a linear operator with a real eigenvalue?
- 11. (Claim:) λ is an eigenvalue of T if and only if $T \lambda I$ is not injective.
- 12. What is an *eigenvector* of $T \in \mathcal{L}(V)$?
- 13. (Claim:) The set of eigenvectors corresponding to an eigenvalue of a linear operator $T \in \mathcal{L}(V)$ is $null(T \lambda I)$ (and thus is a subspace of V).
- 14. Find the eigenvalues and eigenvectors for $T \in \mathcal{L}(\mathbb{R}^2)$ defined by T(w, z) = (-z, w).