\qquad
First name \qquad

LARSON—MATH 610-CLASSROOM WORKSHEET 10 Polynomials and Eigenvalues.

Concepts \& Notation

- (Chp. 1) field \mathbb{F}, list, vector space, $\mathbb{F}^{n}, \mathbb{F}^{S}, \mathbb{F}^{\infty}$, subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence, basis.
- (Chp. 3) linear map, null space, range, injective, surjective, invertible, isomorphism, , isomorphism.
- (Chp. 4) polynomial, root.
- (Chp. 5) eigenvalue.

Polynomials!

1. What is a root λ of a polynomial $p \in \mathcal{P}(\mathbb{F})$?
2. What is the Fundamental Theorem of Algebra?
3. What is the degree of a polynomial $p \in \mathcal{P}(\mathbb{F})$?
4. Claim: For polynomial $p \in \mathcal{P}(\mathbb{F})$ with degree $m \geq 1, \lambda$ is a root of p if and only if there is a $q \in \mathcal{P}(\mathbb{F})$ with degree $m-1$ such that $p(z)=(z-\lambda) q(z)$ for every $z \in \mathbb{F}$.
5. Division Algorithm: If $p, q \in \mathcal{P}(\mathbb{F}), p \neq 0$, there are polynomials $s, r \in \mathcal{P}(\mathbb{F})$ such that $q=s p+r$ and $\operatorname{deg} r<\operatorname{deg} p$.
6. Notation: If $z \in \mathbb{C}$, what is: $\operatorname{Re}(z), \operatorname{Im}(z)$? What is \bar{z} ?
7. Claim: If $\lambda \in \mathbb{C}$ is a root of $p \in \mathbb{R}$ then so is $\bar{\lambda}$.
8. Claim: If $p \in \mathcal{P}(\mathbb{R})$ then p has a unique factorization:

$$
p(x)=c\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{m}\right)\left(x^{2}+\alpha_{1} x+\beta_{1}\right) \ldots\left(x^{2}+\alpha_{M} x+\beta_{M}\right) .
$$

with $\alpha_{j}^{2}<4 \beta_{j}$.

Eigenvalues and Eigenvectors

9. What is an eigenvalue of $T \in \mathcal{L}(V)$?
10. What is an example of a linear operator with a real eigenvalue?
11. (Claim:) λ is an eigenvalue of T if and only if $T-\lambda I$ is not injective.
12. What is an eigenvector of $T \in \mathcal{L}(V)$?
13. (Claim:) The set of eigenvectors corresponding to an eigenvalue of a linear operator $T \in \mathcal{L}(V)$ is $\operatorname{null}(T-\lambda I)$ (and thus is a subspace of V).
14. Find the eigenvalues and eigenvectors for $T \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ defined by $T(w, z)=(-z, w)$.
