Last name _____

First name _____

LARSON—MATH 610—CLASSROOM WORKSHEET 08 Linear Maps.

Concepts & Notation

- (Chp. 1) field \mathbb{F} , list, vector space, \mathbb{F}^n , \mathbb{F}^S , \mathbb{F}^∞ , subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence, basis.
- (Chp. 3) linear map, null space, range, injective, surjective.

The Matrix of a Linear Map

- 1. For $T \in \mathcal{L}(V, W)$, what is $\mathcal{M}(T, (v_1, \ldots, v_n), (w_1, \ldots, w_m))$?
- 2. For $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ with T(x, y) = (x + 3y, 2x + 5y, 7x + 9y), find $\mathcal{M}(T)$.

3. For $T \in \mathcal{L}(V, W)$, with basis v_1, \ldots, v_n for V and w_1, \ldots, w_m for W, $c \in \mathbb{F}$, check that:

$$\mathcal{M}(T+S) = \mathcal{M}(T) + \mathcal{M}(S),$$
$$\mathcal{M}(cT) = c\mathcal{M}(T).$$

- 4. What are the standard definitions of matrix addition, scalar multiplication, and matrix multiplication?
- 5. What is $Mat(m, n, \mathbb{F})$?

6. For vector spaces V, W, U, and linear maps $S : U \to V$ and $T : V \to W$, what is TS?

7. Claim: For vector spaces V, with basis (v_1, \ldots, v_n) , W, with basis (w_1, \ldots, w_m) and U, with basis (u_1, \ldots, u_p) , and linear maps $S: U \to V$ and $T: V \to W$, we have:

$$\mathcal{M}(TS) = \mathcal{M}(T)\mathcal{M}(S)$$

8. If $x = (x_1, \ldots, x_n) \in \mathbb{F}^n$, what is $\mathcal{M}(x)$?

9. If $v \in V$, with basis v_1, \ldots, v_n , what is $\mathcal{M}(v)$?

10. Claim: If $T \in \mathcal{L}(V, W)$, (v_1, \ldots, v_n) is a basis for V, (w_1, \ldots, w_m) is a basis for W, then:

$$\mathcal{M}(Tv) = \mathcal{M}(T)\mathcal{M}(v),$$

for every $v \in V$.

- 11. What is an *invertible* linear map?
- 12. Notation: If $T \in \mathcal{L}(V, W)$, what is T^{-1} ?
- 13. Claim: $T \in \mathcal{L}(V, W)$ is invertible if and only if T is injective and surjective.
- 14. What is a vector space *isomorphism*?
- 15. What does it mean for vector spaces V and W to be *isomorphic*?