$\qquad$
First name $\qquad$

## LARSON—MATH 610-CLASSROOM WORKSHEET 07 Linear Maps.

## Concepts \& Notation

- (Chp. 1) field $\mathbb{F}$, list, vector space, $\mathbb{F}^{n}, \mathbb{F}^{S}, \mathbb{F}^{\infty}$, subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence, basis.
- (Chp. 3) linear map, null space, range, injective, surjective.


## Review

1. Let $T \in \mathcal{L}(V, W)$. Claim: null $T$ is a subspace of $V$.
2. Let $T \in \mathcal{L}(V, W)$. Claim: range $T$ is a subspace of $W$.
3. (Rank-nullity Theorem) If $V$ is finite-dimensional and $T \in \mathcal{L}(V, W)$, then range $T$ is finite-dimensional and

$$
\operatorname{dim} V=\operatorname{dim} \text { null } T+\operatorname{dim} \text { range } T .
$$

## The Matrix of a Linear Map

4. For $T \in \mathcal{L}(V, W)$, what is $\mathcal{M}\left(T,\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{m}\right)\right)$ ?
5. For $T \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$ with $T(x, y)=(x+3 y, 2 x+5 y, 7 x+9 y)$, find $\mathcal{M}(T)$.
6. For $T \in \mathcal{L}(V, W)$, with basis $v_{1}, \ldots, v_{n}$ for $V$ and $w_{1}, \ldots, w_{m}$ for $W, c \in \mathbb{F}$, check that:

$$
\begin{gathered}
\mathcal{M}(T+S)=\mathcal{M}(T)+\mathcal{M}(S) \\
\mathcal{M}(c T)=c \mathcal{M}(T)
\end{gathered}
$$

7. What is $\operatorname{Mat}(m, n, \mathbb{F})$ ?
8. What are the standard definitions of matrix addition, scalar multiplication, and matrix multiplication?
9. For vector spaces $V, W, U$, and linear maps $S: U \rightarrow V$ and $T: V \rightarrow W$, what is $T S$ ?
10. Claim: For vector spaces $V$, with basis $\left(v_{1}, \ldots, v_{n}\right), W$, with basis $\left(w_{1}, \ldots, w_{m}\right)$ and $U$, with basis $\left(u_{1}, \ldots, u_{p}\right)$, and linear maps $S: U \rightarrow V$ and $T: V \rightarrow W$, we have:

$$
\mathcal{M}(T S)=\mathcal{M}(T) \mathcal{M}(S)
$$

11. If $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$, what is $\mathcal{M}(x)$ ?
12. Claim: If $T \in \mathcal{L}(V, W),\left(v_{1}, \ldots, v_{n}\right)$ is a basis for $V,\left(w_{1}, \ldots, w_{m}\right)$ is a basis for $W$, then:

$$
\mathcal{M}(T v)=\mathcal{M}(T) \mathcal{M}(v)
$$

for every $v \in V$.

