Last name	

First name _____

LARSON—MATH 610—CLASSROOM WORKSHEET 07 Linear Maps.

Concepts & Notation

- (Chp. 1) field \mathbb{F} , list, vector space, \mathbb{F}^n , \mathbb{F}^S , \mathbb{F}^∞ , subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence, basis.
- (Chp. 3) linear map, null space, range, injective, surjective.

Review

- 1. Let $T \in \mathcal{L}(V, W)$. Claim: null T is a subspace of V.
- 2. Let $T \in \mathcal{L}(V, W)$. Claim: range T is a subspace of W.
- 3. (Rank-nullity Theorem) If V is finite-dimensional and $T \in \mathcal{L}(V, W)$, then range T is finite-dimensional and

dim V = dim null T + dim range T.

The Matrix of a Linear Map

4. For $T \in \mathcal{L}(V, W)$, what is $\mathcal{M}(T, (v_1, \dots, v_n), (w_1, \dots, w_m))$?

5. For $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ with T(x, y) = (x + 3y, 2x + 5y, 7x + 9y), find $\mathcal{M}(T)$.

6. For $T \in \mathcal{L}(V, W)$, with basis v_1, \ldots, v_n for V and w_1, \ldots, w_m for W, $c \in \mathbb{F}$, check that:

$$\mathcal{M}(T+S) = \mathcal{M}(T) + \mathcal{M}(S),$$
$$\mathcal{M}(cT) = c\mathcal{M}(T).$$

7. What is $Mat(m, n, \mathbb{F})$?

8. What are the standard definitions of matrix addition, scalar multiplication, and matrix multiplication?

9. For vector spaces V, W, U, and linear maps $S: U \to V$ and $T: V \to W$, what is TS?

10. **Claim:** For vector spaces V, with basis (v_1, \ldots, v_n) , W, with basis (w_1, \ldots, w_m) and U, with basis (u_1, \ldots, u_p) , and linear maps $S: U \to V$ and $T: V \to W$, we have:

$$\mathcal{M}(TS) = \mathcal{M}(T)\mathcal{M}(S).$$

11. If $x = (x_1, \ldots, x_n) \in \mathbb{F}^n$, what is $\mathcal{M}(x)$?

12. Claim: If $T \in \mathcal{L}(V, W)$, (v_1, \ldots, v_n) is a basis for V, (w_1, \ldots, w_m) is a basis for W, then:

$$\mathcal{M}(Tv) = \mathcal{M}(T)\mathcal{M}(v),$$

for every $v \in V$.