Last name _____

First name

LARSON—MATH 610—CLASSROOM WORKSHEET 06 Linear Maps.

Concepts & Notation

- (Chp. 1) field \mathbb{F} , list, vector space, \mathbb{F}^n , \mathbb{F}^S , \mathbb{F}^∞ , subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence, basis.
- (Chp. 3) linear map, null space, range, injective, surjective.

Review

- 1. (Linear map lemma.) If v_1, \ldots, v_n is a basis for vector space V and w_1, \ldots, w_n is a basis for vector space W then there is a unique linear map $T: V \to W$ with $Tv_i = w_i$.
- 2. Let $T \in \mathcal{L}(V, W)$. What is the *null space* of T? (Notation: *null* T).
- 3. Let $T \in \mathcal{L}(V, W)$. Claim: null T is a subspace of V.
- 4. Let $T \in \mathcal{L}(V, W)$. What does it mean for T to be *injective*.

New

5. Let $T \in \mathcal{L}(V, W)$. T is injective if and only if $null \ T = \{0\}$.

6. Let $T \in \mathcal{L}(V, W)$. What is the range of T? (Notation: range T).

7. What do we say if range T = W?

8. Let $T \in \mathcal{L}(V, W)$. Claim: range T is a subspace of W.

9. (Rank-nullity Theorem) If V is finite-dimensional and $T \in \mathcal{L}(V, W)$, then range T is finite-dimensional and

 $\dim V = \dim null T + \dim range T.$

The Matrix of a Linear Map

10. For $T \in \mathcal{L}(V, W)$, what is $\mathcal{M}(T, (v_1, \ldots, v_n), (w_1, \ldots, w_m))$?

11. For $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ with T(x, y) = (x + 3y, 2x + 5y, 7x + 9y), find $\mathcal{M}(T)$.

12. For $T \in \mathcal{L}(V, W)$, with basis v_1, \ldots, v_n for V and w_1, \ldots, w_m for $W, c \in \mathbb{F}$, check that:

$$\mathcal{M}(T+S) = \mathcal{M}(T) + \mathcal{M}(S),$$
$$\mathcal{M}(cT) = c\mathcal{M}(T).$$