First name _____

LARSON—MATH 610—CLASSROOM WORKSHEET 02 Review.

Concepts & Notation

- (Chp. 1) field \mathbb{F} , list, vector space, \mathbb{F}^n , \mathbb{F}^S , \mathbb{F}^∞ , subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence.
- 1. When is $U_1 + \ldots + U_m$ a *direct sum*? What is the notation?

- 2. What is a *linear combination* of vectors v_1, \ldots, v_m (over a field \mathbb{F})?
- 3. What is the *span* of vectors v_1, \ldots, v_m (over a field \mathbb{F})?
- 4. (Claim). The span of vectors v_1, \ldots, v_m in V is a subspace of V?
- 5. When is a vector space V finite-dimensional?

6. What is a *polynomial* function $p : \mathbb{F} \to \mathbb{F}$?

7. What is $\mathcal{P}(\mathbb{F})$?

8. What is a *linearly independent* list of vectors?

9. What is a *linearly dependent* list of vectors?

- 10. (Linear Dependence Lemma) If v_1, \ldots, v_m in V are linearly dependent, then:
 - (a) $\exists j \in \{1, ..., m\} v_j \in span(v_1, ..., v_{j-1}).$
 - (b) $span(v_1,\ldots,v_m) = span(v_1,\ldots,\hat{v_j},\ldots,v_m).$

11. Claim: In a finite-dimensional vector space, the length of every linearly independent list of vectors is no more than the length of every spanning list of vectors.