First name _____

LARSON—MATH 610—CLASSROOM WORKSHEET 01 Review.

Concepts & Notation

- (Chp. 1) field 𝔽, list, vector space, 𝔽ⁿ, 𝔽^S, 𝔽[∞], subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence.
- 1. What is a field \mathbb{F} ?
- 2. What is a vector space?
- 3. What is \mathbb{F}^S , for a set S?
- 4. What is \mathbb{F}^{∞} ?
- 5. What is a *subspace* of a vector space V?
- 6. What is $U_1 + \ldots + U_m$ for subspaces U_1, \ldots, U_m of V?
- 7. When is $U_1 + \ldots + U_m$ a *direct sum*? What is the notation?

- 8. What is a *linear combination* of vectors v_1, \ldots, v_m (over a field \mathbb{F})?
- 9. What is the span of vectors v_1, \ldots, v_m (over a field \mathbb{F})?
- 10. (Claim). The span of vectors v_1, \ldots, v_m in V is a subspace of V?
- 11. When is a vector space V finite-dimensional?
- 12. What is a *polynomial* function $p : \mathbb{F} \to \mathbb{F}$?
- 13. What is $\mathcal{P}(\mathbb{F})$?
- 14. What is a *linearly independent* list of vectors?
- 15. What is a *linearly dependent* list of vectors?
- 16. (Linear Dependence Lemma) If v_1, \ldots, v_m in V are linearly dependent, then:
 - (a) $\exists j \in \{1, ..., m\} v_j \in span(v_1, ..., v_{j-1}).$
 - (b) $span(v_1,\ldots,v_m) = span(v_1,\ldots,\hat{v_j},\ldots,v_m).$