| Last name |  |
|-----------|--|
|           |  |

First name \_\_\_\_\_

## LARSON—MATH 556–HOMEWORK WORKSHEET 11 Network Flow & Integrality of Flow



S is the source and T is the sink of this network. The edges are labeled with their capacities. Let  $f_0$  be the zero-flow (that is, flow is zero on all directed lines) and  $val(f_0) = 0$ .

- 1. Find, and indicate a flow-augmenting path P.
- 2. Find  $\epsilon_1$ ,  $\epsilon_2$ , and  $\epsilon$  (as in the proof that a flow is maximum iff there are no flowaugmenting paths). Note that, since the capacities are integers that  $\epsilon$  is necessarily an integer.  $\epsilon$  is the most this flow can be increased along path P.
- 3. Define a new flow  $f_1$  by increasing the flow along P by  $\epsilon$ . Remember to check that your flow satisfies the 2 flow constraints. Draw a new diagram indicating the flow values. Find  $val(f_1)$ .
- 4. If there is another flow-augmenting path P, find it and repeat: find  $\epsilon$ , define an improved flow  $f_2$ , find  $val(f_2)$ , and draw a new diagram. Keep repeating this process until there are no longer any flow-augmenting paths.
- 5. Let your final flow be f. Find val(f). Note that it must be an integer.
- 6. Find  $A_f$  (also as in the proof that a flow is maximum iff there are no flow-augmenting paths).  $A_f$  is a set of points.
- 7. Find the cut  $C = \nabla^+(A_f)$  (this is a set of directed lines, If you have done everything correctly the flow on these lines will equal their capacities, and the flow on the lines from  $V A_f$  to  $A_f$  will be zero).
- 8. Find cap(C). If you have done everything correctly val(f) = cap(C)!