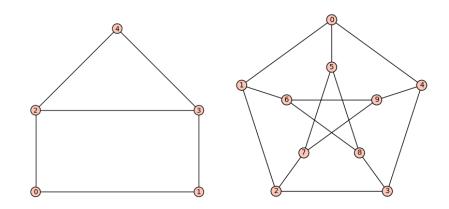
Last name	

First name _____

LARSON—MATH 556–HOMEWORK WORKSHEET 05 Complements and Cliques



The **complement** of a graph G is a graph \overline{G} with the same set of points (so $V(\overline{G}) = V(G)$ and with lines $E(\overline{G}) = \{vw : v, w \in V(\overline{G}) \text{ and } vw \notin E(G)\}$ (that is, vw is a line in \overline{G} if and only if it is not a line in G).

- 1. Draw P_3 and \overline{P}_3 .
- 2. Draw P_5 and \overline{P}_5 .
- 3. Draw C_5 and \overline{C}_5 .
- 4. Draw the complement of the house graph.
- 5. Draw the complement of the Petersen graph.
- 6. The size of a graph is the number of lines of the graph. State and prove a relationship between the size of a graph G and the size of its complement \overline{G} .

A clique in a graph is a complete subgraph (so the points $S \subseteq V(G)$ induce a clique in graph G if and only if G has a line between every pair of points of S). A clique in a graph is maximal if it is not contained in a larger clique. A clique is maximum if it has more points than any other clique.

- 7. Find all 4 maximal cliques in the house graph.
- 8. Find the (unique) maximum clique in the house graph.

The **clique number** ω of a graph is the cardinality of a maximum clique.

- 9. Find ω for the house graph.
- 10. Find ω for the Petersen graph.
- 11. Find formulas for $\omega(P_n)$, $\omega(C_n)$, $\omega(S_n)$ and $\omega(K_n)$.
- 12. Prove: For any graph G, $\omega(G) = \alpha(\overline{G})$.
- 13. Prove: For any graph G, $\omega(G) + \alpha(G) \le |V(G)| + 1$.