Last name _____

First name _____

LARSON—MATH 556–HOMEWORK WORKSHEET 01 Four Fundamental Invariants

For **proofs**, write out the definitions as needed, explain your notation, and be extremely clear. The goal of a proof is to convince **other** readers of your argument. Write as if you are writing to your colleagues. Remember that no one reads minds—they only can know what you tell them.

The complete bipartite graph $K_{n,m}$ consists of two sets of points A and B, with |A| = n and B| = m, where every point in A is adjacent to every point in B.

The **cycle** C_n consists of *n* points $V(C_n) = \{v_1, ..., v_n\}$, and *n* lines $E(C_n) = \{v_1v_2, ..., v_{n-1}v_n, v_nv_1\}.$

The complete graph K_n consists of n points where every pair of points is adjacent.

1. Matching Number

- (a) Draw the complete bipartite graph $K_{3,4}$, find ν , and then *argue* that your answer is correct.
- (b) Conjecture a formula for $\nu(K_{n,m})$.
- (c) Draw the cycle C_4 , find ν , and then *argue* that your answer is correct.
- (d) Draw the cycle C_5 , find ν , and then *argue* that your answer is correct.
- (e) Conjecture a formula for $\nu(C_n)$.
- (f) Draw the complete graph K_4 , find ν , and then *argue* that your answer is correct.
- (g) Draw the complete graph K_5 , find ν , and then *argue* that your answer is correct.
- (h) Conjecture a formula for $\nu(K_n)$.

2. Line Covering Number

- (a) Find $\rho(K_{3,4})$, and then *argue* that your answer is correct.
- (b) Conjecture a formula for $\rho(K_{n,m})$.
- (c) Find $\rho(C_4)$, and then *argue* that your answer is correct.
- (d) Find $\rho(C_5)$, and then *argue* that your answer is correct.
- (e) Conjecture a formula for $\rho(C_n)$.
- (f) Find $\rho(K_4)$, and then *argue* that your answer is correct.
- (g) Find $\rho(K_5)$, and then *argue* that your answer is correct.
- (h) Conjecture a formula for $\rho(K_n)$.

3. Independence Number

- (a) Find $\alpha(K_{3,4})$, and then *argue* that your answer is correct.
- (b) Conjecture a formula for $\alpha(K_{n,m})$.
- (c) Find $\alpha(C_4)$, and then *argue* that your answer is correct.
- (d) Find $\alpha(C_5)$, and then *argue* that your answer is correct.
- (e) Conjecture a formula for $\alpha(C_n)$.
- (f) Find $\alpha(K_4)$, and then *argue* that your answer is correct.
- (g) Find $\alpha(K_5)$, and then *argue* that your answer is correct.
- (h) Conjecture a formula for $\alpha(K_n)$.

4. Point Covering Number

- (a) Find $\tau(K_{3,4})$, and then *argue* that your answer is correct.
- (b) Conjecture a formula for $\tau(K_{n,m})$.
- (c) Find $\tau(C_4)$, and then *argue* that your answer is correct.
- (d) Find $\tau(C_5)$, and then *argue* that your answer is correct.
- (e) Conjecture a formula for $\tau(C_n)$.
- (f) Find $\tau(K_4)$, and then *argue* that your answer is correct.
- (g) Find $\tau(K_5)$, and then *argue* that your answer is correct.
- (h) Conjecture a formula for $\tau(K_n)$.
- 5. **Prove** one of your conjectures.