Last name _____

First name _____

LARSON—MATH 556—CLASSROOM WORKSHEET 23 Max Flow-Min Cut Theorem

Review

- What is the maximum degree Δ of a graph?
- What is a *regular* graph?
- What is a valid (or proper) line coloring of a graph? What is χ_e ?
- What is Kőnig's Line Coloring Theorem?
- Why does a regular bipartite graph have a perfect matching?
- Lovasz and Plummer claim that, given any bipartite graph G with maximum degree Δ there is a Δ -regular bipartite graph H where G is a subgraph of H. Why is that true?

Questions

1. Prove Kőnig's Line Coloring Theorem.

Network Flows

2. What is a *directed graph*?

3. What is a *source* in a directed graph?

4. What is a *sink* in a directed graph?

5. What is a *capacity* of a line in a directed graph?

6. What is a *network*?

7. What is a flow in a network?

8. What is the *value* of a flow in a network?

9. Why does a maximum flow in a network *exist*?

10. If $A \subseteq V(D)$, what is the *directed cut out of* A, $\nabla^+(A)$?

11. What is a *separator* A in a network?

12. What is a cut $\nabla(A)^+$ in a network?

13. What is the *capacity* of a cut $\nabla(A)^+$ (or a separator A) in a network?

15. Explain the following proof.

2.1.2. LEMMA. If f is any flow in D and C is any s-t cut, then $val(f) \leq cap(C)$.

PROOF. Let f and $C = \nabla^+(A)$ denote an arbitrary s-t flow and an s-t cut in D respectively. Then

$$\begin{aligned} \operatorname{val}(f) &= \sum_{u} f(s, u) - \sum_{u} f(u, s) \\ &= \sum_{u} f(s, u) - \sum_{u} f(u, s) + \sum_{a \in A - s} \left(\sum_{w} f(a, w) - \sum_{v} f(v, a) \right) \\ &= \sum_{a \in A} \left(\sum_{w} f(a, w) - \sum_{v} f(v, a) \right) \\ &= \sum_{a \in A} \sum_{w} f(a, w) - \sum_{a \in A} \sum_{v} f(v, a) \\ &= \left(\sum_{\substack{a \in A \\ w \in A}} f(a, w) + \sum_{\substack{a \in A \\ w \in V - A}} f(a, w) \right) - \left(\sum_{\substack{a \in A \\ v \in A}} f(v, a) + \sum_{\substack{a \in A \\ v \in V - A}} f(v, a) \right) \end{aligned}$$

Noting that the first and third terms cancel we have

$$\operatorname{val}(f) = \sum_{\substack{a \in A \\ w \in V - A}} f(a, w) - \sum_{\substack{a \in A \\ v \in V - A}} f(v, a).$$

But by definition of flow, $\sum_{a \in A, v \in V-A} f(v, a) \ge 0$, so

$$\operatorname{val}(f) \leq \sum_{\substack{a \in A \\ w \in V-A}} f(a, w) \leq \sum_{\substack{a \in A \\ w \in V-A}} c(a, w) \leq \operatorname{cap}(A).$$