Last name _____

First name _____

LARSON—MATH 556—CLASSROOM WORKSHEET 15 Partially Ordered Sets & Dilworth's Theorem

Homework

• A *spanning tree* in a connected graph is a subgraph that is a tree that contains all the points of the parent graph. Prove that every connected graph has a spanning tree.

Review

- What is a system of distinct representatives (SDR) for a (finite) family of sets?
- What is *Hall's SDR Theorem*?
- 1. How can we apply the (bipartite graph version of) Hall's Theorem to model the SDR question and prove Hall's SDR Theorem?

Partially Ordered Sets & Dilworth's Theorem

A partial order on a set X is a relation " \leq " on X that is reflexive, anti-symmetric and transitive. We call (X, \leq) a partially ordered set (or poset).

- 2. (Inclusion poset). Let $[4] = \{1, 2, 3, 4\}$ and $\mathcal{P}([4])$ be the *power set* of [4]. Consider this family of sets together with the inclusion relation " \subseteq ": show that $(\mathcal{P}([4]), \subseteq)$ is a poset.
 - (a) Show " \subseteq " is reflexive.

(b) Show " \subseteq " is anti-symmetric.

(c) Show " \subseteq " is transitive.

For $x, y, z \in X$, x covers y (or equivalently y is covered by x) if $y \le x$ and $y \le z \le x$ implies that z = x or z = y. A Hasse diagram (or covering diagram) for a poset (X, \le) is a representation of the elements of X together with a line between elements x and y is x covers y.

3. Draw the Hasse diagram for $(\mathcal{P}([4]), \subseteq)$.

A *chain* in (X, \leq) is a linearly ordered subset of X (with respect to the given order \leq), that is $C \subseteq X$ and (C, \leq) is a linear order.

4. Find examples of chains in $(\mathcal{P}([4]), \subseteq)$.

5. Find a partition of the elements of $(\mathcal{P}([4]), \subseteq)$ into a minimum number of chains.

An *anti-chain* in $(\mathcal{P}([4]), \subseteq)$ is a collection of elements which are pair-wise incomparable.

6. Find a largest anti-chain in $(\mathcal{P}([4]), \subseteq)$.

- 7. (Divisibility poset). Let $X = \{2, 3, ..., 10\}$ and define the divisibility relation "|": For $x, y \in X$, x|y (that is, x divides y, or y is divisible by x)) if there is an integer k such that kx = y. Show that (X, |) is a poset.
 - (a) Show "|" is reflexive.

(b) Show "|" is anti-symmetric.

(c) Show "|" is transitive.

8. Draw the Hasse diagram for (X, |).

9. Find examples of chains in (X, |).

10. Find a partition of the elements of (X, |) into a minimum number of chains.

11. Find a largest anti-chain in (X, |).