Last name	

First name _____

LARSON—MATH 556—CLASSROOM WORKSHEET 14 Hungarian Forests and the Hungarian Method

Concepts & Notation

- assignment problem, graph G, points V(G), lines E(G), adjacent, incident.
- line covering, line covering number ρ , matching, matching number ν , point covering, point covering number τ , independent set, independence number α .

Review

- What is König's Minimax Theorem?
- What is **Berge's Theorem**?
- Hungarian Forest. For a bipartite graph G = (A, B), and matching M, and Munsaturated vertices $A_1 \subseteq A$ and $B_1 \subseteq B$, a Hungarian forest F is a forest subgraph
 of G that is maximal with respect to the following conditions:
 - Every B-point in F is either in B_1 or has degree 2 with one incident edge in M,
 - Each tree component of F contains a single point in A_1 .
- Hungarian Method For a bipartite graph G = (A, B), and matching M, the Hungarian Method produces, on each iteration, either a larger matching or a point cover with |M| points.
 - 1. Find a (maximal) Hungarian forest F with respect to M.
 - 2. If F contains a point w in B_1 then there is an M-augmenting path P, the unique path in the tree component containing w from w to the unique point v in A_1 in that component. Let $M' = P \oplus M$ be the updated (larger) matching, and repeat.
 - 3. If F contains no points in B_1 then let $X = A \setminus V(F)$ and $Y = B \cap V(F)$. $X \cup Y$ is a minimum point cover (with cardinality |M|).
- Why does a (maximal) Hungarian forest F contain $|A_1|$ tree components?
- Why is every path from a point in A_1 to a leaf (pendant, degree-1 point) in a Hungarian forest F an M-alternating path?
- If G has 2n points, why does the Hungarian Method terminate in at most n iterations?
- If a produced Hungarian forest F contains a point in B_1 , why must there be an M-augmenting path in G?
- If F is a (maximal) Hungarian forest with no point in B_1 , why is $X \cup Y$ a point cover?

1. If F is a (maximal) Hungarian forest with no point in B_1 , why does $|X \cup Y| = |M|$?

2. Why does the Hungarian method produce a *provably* maximum matching in a bipartite graph?

Hall's SDR Theorem

3. What is a system of distinct representatives (SDR) for a (finite) family of sets?

4. What is *Hall's SDR Theorem*?

5. How can we apply the (bipartite graph version of) Hall's Theorem to model the SDR question and prove Hall's SDR Theorem?

Partially Ordered Sets & Dilworth's Theorem

A partial order on a set X is a relation " \leq " on X that is reflexive, anti-symmetric and transitive. We call (X, \leq) a partially ordered set (or poset).

- 6. Let $X = \{2, 3, ..., 10\}$ and define the divisibility relation "|": For $x, y \in X$, x|y (that is, x divides y, or y is divisible by x)) if there is an integer k such that kx = y. Show that (X, |) is a poset.
 - (a) Show "|" is reflexive.

(b) Show "|" is anti-symmetric.

(c) Show "|" is transitive.

For $x, y, z \in X$, x covers y (or equivalently y is covered by x) if $y \le x$ and $y \le z \le x$ implies that z = x or z = y.

A Hasse diagram (or covering diagram) for a poset (X, \leq) is a representation of the elements of X together with a line between elements x and y is x covers y.

7. Draw the Hasse diagram for (X, |).