Last name	
First name	

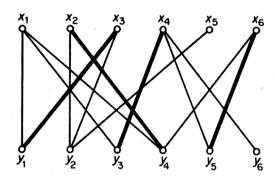
LARSON—MATH 556—CLASSROOM WORKSHEET 13 Hungarian Forests and the Hungarian Method

Concepts & Notation

- assignment problem, graph G, points V(G), lines E(G), adjacent, incident.
- line covering, line covering number ρ , matching, matching number ν , point covering, point covering number τ , independent set, independence number α .

Review

- König's Theorem: For any bipartite graph, $\tau = \nu$.
- Let M be a matching in a graph. What is an M-alternating path?
- Let M be a matching in a graph. What is an M-augmenting path?
- What is Berge's Theorem?



Hungarian Forest. For a bipartite graph G = (A, B), and matching M, and M-unsaturated vertices $A_1 \subseteq A$ and $B_1 \subseteq B$, a Hungarian forest F is a forest subgraph of G that is maximal with respect to the following conditions:

- Every B-point in F is either in B_1 or has degree 2 with one incident edge in M,
- Each tree component of F contains a single point in A_1 .
- 1. Why does a (maximal) Hungarian forest F contain $|A_1|$ tree components?

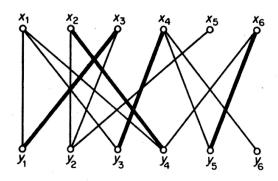
2. Why is every path in a Hungarian forest F an M-alternating path?

Hungarian Method For a bipartite graph G = (A, B), and matching M, the *Hungarian Method* produces, on each iteration, either a larger matching or a point cover with |M| points.

- (a) Find a (maximal) Hungarian forest F with respect to M.
- (b) If F contains a point w in B_1 then there is an M-augmenting path P, the unique path in the tree component containing w from w to the unique point v in A_1 in that component. Let $M' = P \oplus M$ be the updated (larger) matching, and repeat.
- (c) If F contains no points in B_1 then let $X = A \setminus V(F)$ and $Y = B \cup V(F)$. $X \cup Y$ is a minimum point cover (with cardinality |M|).
- 3. If G has 2n points, why does the Hungarian Method terminate in at most n iterations?

4. If a produced Hungarian forest F contains a point in B_1 , why must there be an M-augmenting path in G?

5. If F is a (maximal) Hungarian forest with no point in B_1 , why is $X \cup Y$ a point cover?



6. If F is a (maximal) Hungarian forest with no point in B_1 , why does $|X \cup Y| = |M|$?

7. Why does the Hungarian method produce a *provably* maximum matching in a bipartite graph?

Hall's SDR Theorem

8. What is a system of distinct representatives (SDR) for a (finite) family of sets?

9.	What is Hall's SDR Theorem?
10.	How can we apply the (bipartite graph version of) Hall's Theorem to model the SDR question and prove Hall's SDR Theorem?