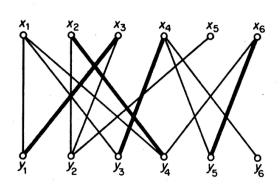
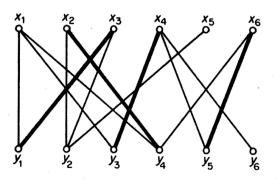
| Last name  |  |
|------------|--|
|            |  |
| First name |  |

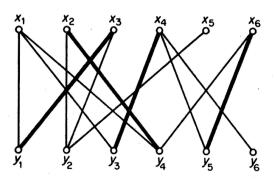

## LARSON—MATH 556—CLASSROOM WORKSHEET 12 Berge's Theorem and the Hungarian Method

## Concepts & Notation

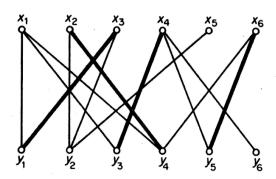

- assignment problem, graph G, points V(G), lines E(G), adjacent, incident.
- line covering, line covering number  $\rho$ , matching, matching number  $\nu$ , point covering, point covering number  $\tau$ , independent set, independence number  $\alpha$ .

## Review

- König's Theorem: For any bipartite graph,  $\tau = \nu$ .
- Let M be a matching in a graph. What is an M-alternating path?
- Let M be a matching in a graph. What is an M-augmenting path?




1. Let M be the highlighted lines. Find an M-augmenting path in this graph.




2. What is Berge's Theorem?

3. Why is Berge's Theorem true?



4. What is the  ${\it Hungarian~Method?}$ 



5. Why does the Hungarian method produce a provably maximum matching in a bipartite graph?