Last name	

First name _____

LARSON—MATH 556—CLASSROOM WORKSHEET 06 The Proof of König's Minimax Theorem

Concepts & Notation

- assignment problem, graph G, points V(G), lines E(G), adjacent, incident.
- line covering, line covering number ρ , matching, matching number ν , point covering, point covering number τ , independent set, independence number α .

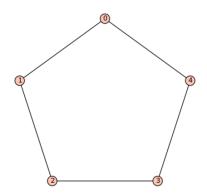
Review

- If G is a graph and H is also a graph the points and lines of which are also points and lines of G, then H is a **subgraph** of G. If H is a subgraph of G, and if every line joining two points of H which lies in G also lies in H then H is an **induced** subgraph of G. If X is a set of points in G then the **subgraph of G induced by** $\mathbf{X}, G[X]$, is the induced subgraph of G having point set X.
- Let C be any set of lines in a graph and let V(C) be the set of points incident to those lines. $\langle C \rangle$ is the subgraph with point set V(C) and lines C.
- Gallai Identity: for any graph G (with no isolated points), $\nu(G) + \rho(G) = |V(G)|$.

The Proof of Theorem 1.1.1

1. The symmetric difference of sets A and B, denoted $A \oplus B$, is $(A \setminus B) \cup (B \setminus A)$. Let $A = \{a, b, c, d\}$ and $B = \{b, d, e\}$. Find $A \oplus B$.

2. Draw any bipartite graph G with 5 points. Let S be any 3-element subset of V(G). Draw G[S]. Check that G[S] is bipartite. 3. Let G be any bipartite graph and $S \subseteq G$. Show (that is, argue, prove): G[S] is bipartite.



4. Let G be this cycle. Find a minimum point cover of G. Find $\tau(G)$.

5. Let G be this cycle and let x be the line $\{0, 1\}$. Draw G - x.

6. Find a minimum point cover S_x of G - x. Find $\tau(G - x)$.

7. Is it true that for *every* line x of G that $\tau(G - x) = \tau(G) - 1$?

8. Argue that no minimum point cover of G - x can contain either of the points 0 or 1.

9. Let G be the cycle above and let y be the line $\{0, 4\}$. Draw G - y.

10. Find a minimum point cover S_y of G - y. Find $\tau(G - y)$.

11. Argue that no minimum point cover of G - y can contain either of the points 0 or 4.

12. Find $S_x \oplus S_y$

13. Draw $G[\{0\} \cup (S_x \oplus S_y)].$

14. **Prove:** For any bipartite graph, $\tau = \nu$.