Last name		
First name		

LARSON—MATH 556—CLASSROOM WORKSHEET 04 The Proof of Lemma 1.02 (a Gallai Identity)

Concepts & Notation

- assignment problem, graph G, points V(G), lines E(G), adjacent, incident.
- line covering, line covering number ρ , matching, matching number ν , point covering, point covering number τ , independent set, independence number α .

Review

- A star is the complete bipartite graph $K_{1,n}$. $(K_{1,n}$ is the *n*-star, or star on n+1 points).
- A **matching** in a graph is a set of lines where no pair of lines is incident to the same point. A matching is **maximum** if there is no matching with larger cardinality. The cardinality of a maximum matching in graph G is the **matching number** $\nu(G)$.
- A line cover in a graph is a set of lines which are incident to all the points in the graph. A line cover is *minimum* if there is no line cover with small cardinality. The cardinality of a minimum line cover in graph G is the line covering number $\rho(G)$.
- An *independent set* in a graph is a set of points no pair of which are adjacent. An independent set is **maximum** if there is no independent set with larger cardinality. The cardinality of a maximum independent set in graph G is the *independence number* $\alpha(G)$.

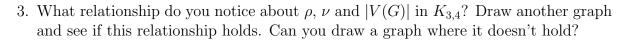
Basic Definitions & the 4 fundamental invariants in Chp. 1

1. Find a maximum independent set for $K_{3,4}$. Then find α . Can you find an independent set which is maximal (can't be extended) but is not maximum?

A **point cover** is a set of points which are incident to all the lines in the graph. A point cover is *minimum* if there is no point cover with smaller cardinality. The cardinality of a minimum matching in graph G is the **point covering number** $\tau(G)$.

2. Find a minimum point cover for $K_{3,4}$. Then find τ . Can you find a point cover which is minim al (can't be reduced) but is not minimum?

The Proof of Lemma 1.02



If G is a graph and H is also a graph the points and lines of which are also points and lines of G, then H is a **subgraph** of G. If H is a subgraph of G, and if every line joining two points of H which lies in G also lies in H then H is an **induced** subgraph of G. If X is a set of points in G then the **subgraph of G induced by** X, G[X], is the induced subgraph of G having point set X.

4. Find a subgraph of $K_{3,4}$ which is not an induced subgraph of $K_{3,4}$. What can you say about any induced subgraph of $K_{3,4}$?

An alternating sequence of points and lines, beginning and ending with points, is called a walk. If all lines in a walk are distinct, the walk is called a trail. If, in wints are also distinct the trail is a nath A graph is connected if

	addition, the points are also distinct, the trail is a path . A graph is connected i
	every two points are joined by a path. A maximal connected subgraph of a graph G
	is a component of G .
5.	Draw a graph with 3 components.

- 6. Draw a connected graph with a line so that removing the line makes the graph disconnected.
- 7. Draw a connected graph where removing an line makes the graph dis-connected.

8. What is the fewest number of lines that need to be removed from $K_{3,4}$ in order to make it dis-connected?

- Let C be any set of lines in a graph and let V(C) be the set of points incident to those lines. $\langle C \rangle$ is the subgraph with point set V(C) and lines C.
- 9. Let be C is a minimum line cover of a graph. What must $\langle C \rangle$ "look like"? Draw some examples. Will $\langle C \rangle$ be connected?

10. Explain why, for any graph G (with no isolated points), $\nu(G) + \rho(G) = |V(G)|$.