Last name _____

First name _____

LARSON—MATH 556—CLASSROOM WORKSHEET 03 4 Fundamental Invariants.

Concepts & Notation

- assignment problem, graph G, points V(G), lines E(G), adjacent, incident.
- line covering, line covering number ρ , matching, matching number ν , point covering, point covering number τ , independent set, independence number α .

Review

A **bipartite graph** is a graph G = (A, B) with bipartition $V(G) = A \cup B$ where every line has one endpoint in A and the other in B.

A complete bipartite graph is a graph G = (A, B) with bipartition $V(G) = A \cup B$ where there is a line between every point in A and point in B. $K_{m,n}$ denotes the complete bipartite graph with |A| = n and |B| = m.

Basic Definitions & the 4 fundamental invariants in Chp. 1

- 1. Draw the complete bipartite graph $K_{3,3}$.
- 2. Draw the complete bipartite graph $K_{3,4}$.

A star is the complete bipartite graph $K_{1,n}$. ($K_{1,n}$ is the *n*-star, or star on n + 1 points).

- 3. Draw the star $K_{1,3}$.
- 4. Draw the 2-star and the 6-star.

A matching in a graph is a set of lines where no pair of lines is incident to the same point. A matching is **maximum** if there is no matching with larger cardinality. The cardinality of a maximum matching in graph G is the **matching number** $\nu(G)$.

5. Find a maximum matching for $K_{3,4}$. Then find ν . Can you find a matching which is maximal (can't be extended) but is not maximum?

A line cover in a graph is a set of lines which are incident to all the points in the graph. A line cover is *minimum* if there is no line cover with small cardinality. The cardinality of a minimum line cover in graph G is the *line covering number* $\rho(G)$.

6. Find a minimum line cover for $K_{3,4}$. Then find ρ . Can you find a line cover which is minimal (can't be reduced) but is not minimum?

An *independent set* in a graph is a set of points no pair of which are adjacent. An independent set is **maximum** if there is no independent set with larger cardinality. The cardinality of a maximum independent set in graph G is the *independence number* $\alpha(G)$.

7. Find a maximum independent set for $K_{3,4}$. Then find α . Can you find an independent set which is maximal (can't be extended) but is not maximum?

A **point cover** is a set of points which are incident to all the lines in the graph. A point cover is *minimum* if there is no point cover with smaller cardinality. The cardinality of a minimum matching in graph G is the **point covering number** $\tau(G)$.

8. Find a minimum point cover for $K_{3,4}$. Then find τ . Can you find a point cover which is minimal (can't be reduced) but is not minimum?

The Proof of Lemma 1.02

9. What relationship do you notice about ρ , ν and |V(G)| in $K_{3,4}$? Draw another graph and see if this relationship holds. Can you draw a graph where it doesn't hold?

If G is a graph and H is also a graph the points and lines of which are also points and lines of G, then H is a **subgraph** of G. If H is a subgraph of G, and if every line joining two points of H which lies in G also lies in H then H is an **induced** subgraph of G. If X is a set of points in G then the **subgraph of G induced by** $\mathbf{X}, G[X]$, is the induced subgraph of G having point set X.

10. Find a subgraph of $K_{3,4}$ which is not an induced subgraph of $K_{3,4}$. What can you say about any induced subgraph of $K_{3,4}$?

An alternating sequence of points and lines, beginning and ending with points, is called a **walk**. If all lines in a walk are distinct, the walk is called a **trail**. If, in addition, the points are also distinct, the trail is a **path**. A graph is **connected** if every two points are joined by a path. A maximal connected subgraph of a graph G is a **component** of G.

- 11. Draw a graph with 3 components.
- 12. Draw a connected graph with a line so that removing the line makes the graph disconnected.
- 13. Draw a connected graph where removing an line makes the graph dis-connected.

14. What is the fewest number of lines that need to be removed from $K_{3,4}$ in order to make it dis-connected?

Let C be any set of lines in a graph and let V(C) be the set of points incident to those lines. $\langle C \rangle$ is the subgraph with point set V(C) and lines C.

15. Draw $K_{3,4}$. Let C be any pair of non-incident lines. $\langle C \rangle$ and the induced subgraph G[V(C)] are different. Why?

16. Let be C is a minimum line cover of a graph. What must $\langle C \rangle$ "look like"? Draw some examples. Will $\langle C \rangle$ be connected?