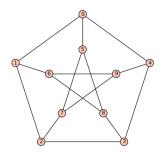
Last name _____

First name _____

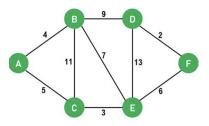
LARSON—MATH 356—HOMEWORK WORKSHEET 07 Test 1 REVIEW.

Definitions. Write the definition **and** an example.

- 1. What is a graph G (formal definition)?
- 2. What is V(G), E(G)?
- 3. What does it mean for vertices to be *adjacent*?
- 4. What is an *independent set* of vertices?
- 5. What is maxset(G)?
- 6. What is a *subset* of a set?
- 7. What is a weighted graph?
- 8. What is a *shortest path* between two vertices in a weighted graph?
- 9. (little-o). What does f(x) = o(g(x)) mean?
- 10. (big-O). What does f(x) = O(g(x)) mean?
- 11. (twiddles). What does $f(x) \sim g(x)$ mean?
- 12. What is a *first-order* recurrence relation?
- 13. (Notation)What is [n]?
- 14. (Notation) If S is a set, what is |S|? What is |[n]|?
- 15. What is the binomial coefficient $\binom{n}{k}$?
- 16. What is the *binomial theorem*?
- 17. What is the *degree* $\rho(v)$ of a vertex v?
- 18. What is a *subgraph* of a graph?
- 19. What is an *induced subgraph* of a graph?


Algorithms

- 20. Describe an algorithm to find a maximum independent set in a graph?
- 21. What is Dijkstra's algorithm?


Theorems. Explain why the statement is true.

- 22. Why does $\sum_{k=0}^{n} {n \choose k} = 2^{n}$?
- 23. Why does $\sum_{v \in V(G)} \rho(v) = 2|E(G)|$?

Problems. Explain your answers.

24. Find a maximum independent set I in the Petersen graph. Argue that your set I is maximum (that there *can't* be a larger independent set).

- 25. Use Dijkstra's algorithm to find a shortest path from C to D.
- 26. Explain why e^x grows *faster* than x^{α} for any positive α .
- 27. Explain why x^{α} grows *faster* than log x for any positive α .
- 28. True or False. Explain.
 - (a) $x^2 = o(x^5)$.
 - (b) 1/x = o(1).
 - (c) $2\sin x = O(x)$.
 - (d) $\sin x = O(1)$.
 - (e) $x^2 + x \sim x^2$.
 - (f) $2^x + 7\log x + \cos x \sim 2^x$.
- 29. What does $n = (10100)_2$ mean? Find *n*.
- 30. Find the base-2 representation of n = 111.
- 31. How many *bits* are in the base-2 representation of an integer n?
- 32. Why does $\frac{1-x^n}{1-x} = 1 + x + x^2 + \ldots + x^{n-1}$?
- 33. Solve: $x_{n+1} = 5x_n + 7 \ (n \ge 0; x_0 = 0).$