Last name	

First name _____

LARSON—MATH 356—HOMEWORK WORKSHEET 02 Dijkstra's Algorithm.

1. What is a *shortest path* between two vertices in a weighted graph?

2. Find (eyeball) a shortest path from vertex F to vertex A in this graph.

Dijkstra's algorithm.

Let G be a graph with vertices V, edges E and edge weights w((a, b)) for each edge $(a, b) \in E$. Let d(v, u) be the total weight of a shortest path from v to u. Initialize $S_0 = \{x\}$ and $U_0 = V \setminus \{x\}$.

After *i* iterations S_i will be the set of vertices where the shortest path from *x* to each of these vertices is known, and U_i will be the vertices where the shortest path from *x* has not yet been established. We'll always have $V = S_i \cup U_i$.

- (a) Let x_i be a vertex that minimizes $d(x, s) + w((s, x_i))$ for $s \in S_i, x_i \in U_i$.
- (b) Let $d(x, x_i)$ be the minimum found.
- (c) Let $predecessor(x_i) = s$ where $s \in S_i$ is a vertex where $d(x, x_i) = d(x, s) + w((s, x_i))$.
- (d) Let $S_{i+1} = S_i \cup \{x_i\}.$
- (e) Let $U_{i+1} = U_i \setminus \{x_i\}.$

A shortest path from x to any vertex z (including y) can be found by using the *predecessor* function to trace backwards from z.

- 3. Now use Dijkstra's algorithm to find a shortest path from F to A.
 - (a) What are S_0 and U_0 ?
 - (b) Then there will be 5 iterations. So, you will first find x_1, S_1, U_1 and $predecessor(x_1)$.
 - (c) Then find x_2 , S_2 , U_2 and $predecessor(x_2)$. Repeat.
 - (d) Explain how to use the predecessor function to trace back a shortest path.
 - (e) Sum up the weights of the edges on this path to calculate d(F, A).

Dijkstra's algorithm.

Let G be a graph with vertices V, edges E and edge weights w((a, b)) for each edge $(a, b) \in E$. Let d(v, u) be the total weight of a shortest path from v to u. Initialize $S_0 = \{x\}$ and $U_0 = V \setminus \{x\}$.

After *i* iterations S_i will be the set of vertices where the shortest path from *x* to each of these vertices is known, and U_i will be the vertices where the shortest path from *x* has not yet been established. We'll always have $V = S_i \cup U_i$.

- (a) Let x_i be a vertex that minimizes $d(x, s) + w((s, x_i))$ for $s \in S_i, x_i \in U_i$.
- (b) Let $d(x, x_i)$ be the minimum found.
- (c) Let $predecessor(x_i) = s$ where $s \in S_i$ is a vertex where $d(x, x_i) = d(x, s) + w((s, x_i))$.
- (d) Let $S_{i+1} = S_i \cup \{x_i\}.$
- (e) Let $U_{i+1} = U_i \setminus \{x_i\}.$

A shortest path from x to any vertex z (including y) can be found by using the *predecessor* function to trace backwards from z.

- 4. Find (eyeball) a shortest path from vertex Z to vertex A in this graph.
- 5. Now use Dijkstra's algorithm to find a shortest path from Z to A.
 - (a) What are S_0 and U_0 ?
 - (b) Then there will be 7 iterations. So, you will first find x_1, S_1, U_1 and $predecessor(x_1)$.
 - (c) Then find x_2 , S_2 , U_2 and $predecessor(x_2)$. Repeat.
 - (d) Explain how to use the predecessor function to trace back a shortest path.
 - (e) Sum up the weights of the edges on this path to calculate d(Z, A).