Last name _____

First name _____

LARSON—MATH 356—CLASSROOM WORKSHEET 21 Chromatic Polynomials

Review

- (Notation). If e = (v, w) is an edge in graph G, what is $G \{e\}$?
- (Notation). If e = (v, w) is an edge in graph G, what is $G/\{e\}$?
- What is a proper K-coloring of a graph G?
- Find the number of proper K-colorings of a complete graph K_n .
- Find the number of proper K-colorings of an empty graph E_n .
- Find the number of proper K-colorings of a path graph P_n .
- (Claim) If e = (v, w) is an edge in graph G, then the number of proper K-colorings of $G \{e\}$ where v and w have the same color is the same as the number of proper K-colorings of $G/\{e\}$.

Our goal is to count the number of K-colorings of a graph G.

- 1. What is P(K;G)?
- 2. What is $P(K; K_n)$?
- 3. What is $P(K; E_n)$?
- 4. What is $P(K; P_n)$?

5. Why does $P(K; G - \{e\}) = P(K; G/\{e\}) + P(K; G)$?

6. Why is P(K;G) a polynomial for any graph G?

7. What is an algorithm for computing P(K;G)?

8. Use this algorithm to compute $P(K; C_5)$.

9. What is the complexity of this algorithm?