Last name _____

First name _____

LARSON—MATH 356—CLASSROOM WORKSHEET 11 Recurrence Relations

Review

• How does Wilf use differentiation and reference to the series zoo to evaluate:

 $1 + 2 \cdot 2 + 3 \cdot 4 + 4 \cdot 8 + 5 \cdot 16 + \dots N \cdot 2^{N-1}?$

• How does Wilf use reference to the series zoo and manipulation to evaluate:

$$\frac{1}{2\cdot 3^2} + \frac{1}{3\cdot 3^3} + \dots?$$

• What is a *first-order* recurrence relation?

Steps to solve $x_{n+1} = b_{n+1}x_n + c_{n+1}$ $(n \ge 1; x_0 \text{ given}).$

- Let a new sequence y_1, y_2, \ldots be defined by $x_n = b_1 b_2 \ldots b_n y_n \ (n \ge 1; x_0 = y_0)$.
- Substitute for x_n in the original recurrence.
- Divide by the coefficients of the y's to get $y_{n+1} = y_n + d_{n+1}$. $(n \ge 0, y_0 \text{ given})$, with $d_{n+1} = \frac{c_{n+1}}{b_1 \dots b_{n+1}}$.
- So $y_n = y_0 + \sum_{j=1}^n d_j$ $(n \ge 0)$. Now reverse the change of variables.
- 1. Solve: $x_{n+1} = 3x_n + n \ (n \ge 0; x_0 = 0).$

- 2. What is a *second-order* recurrence relation?
- 3. How does Wilf use the "geometric series" idea to solve the Fibonacci sequence recurrence?

Counting

- 4. (Notation) What is [n]?
- 5. (Notation) If S is a set, what is |S|? What is |[n]|?
- 6. What is the binomial coefficient $\binom{n}{k}$?
- 7. Why does $\binom{n}{k} = \binom{n}{n-k}$?
- 8. What is *Pascal's Triangle*?

9. How many subsets does an n-element set have?

10. Why does $\sum_{k=0}^{n} {n \choose k} = 2^{n}$?

11. What is the *binomial theorem*?