Last name _____

First name _____

LARSON—MATH 356—CLASSROOM WORKSHEET 07 Orders of Magnitude

Review

- Explain why 2^x grows *faster* than x^{α} for any positive α .
- Explain why x^{α} grows *faster* than $\log x$ for any positive α .

Definition (little-o). We say that f(x) = o(g(x)) $(x \to \infty)$ if $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ exists and is equal to 0.

Orders of Magnitude

Definition (big-O). We say that f(x) = O(g(x)) $(x \to \infty)$ if $\exists C, x_0$ such that |f(x)| < Cg(x) $(\forall x > x_0)$.

- 1. Check these examples:
 - (a) $x^3 + 5x^2 + 77\cos x = O(x^5)$.

(b)
$$\frac{1}{(1+x^2)} = O(1).$$

Definition (Theta). We say that $f(x) = \Theta(g(x))$ if there are constants c1 > 0, c2 > 0, x_0 such that for all $x > x_0$, it is true that $c_1g(x) < f(x) < c_2g(x)$.

2. Check these examples:

(a)
$$(x+1)^2 = \Theta(3x^2)$$
.

(b)
$$\frac{(x^2+5x+7)}{(5x^3+7x+2)} = \Theta(\frac{1}{x}).$$

(c)
$$\sqrt{3 + \sqrt{2x}} = \Theta(x^{\frac{1}{4}}).$$

(d)
$$(1 + \frac{3}{x})^x = \Theta(1).$$

Definition (twiddles). We say that $f(x) \sim g(x)$ if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$.

- (a) $x^2 + x \sim x^2$.
- (b) $(3x+1)^4 \sim 81x^4$.
- (c) $\sin \frac{1}{x} \sim \frac{1}{x}$.
- (d) $\frac{(2x^3+5x+7)}{(x^2+4)} \sim 2x.$
- (e) $2^x + 7\log x + \cos x \sim 2^x$.

The last symbol in the asymptotic set that we will need is the ' Ω .' In a nutshell, ' Ω ' is the negation of 'o.' That is to say, $f(x) = \Omega(g(x))$ means that it is not true that f(x) = o(g(x)). In the study of algorithms for computers, the ' Ω ' is used when we want to express the thought that a certain calculation takes at least so-and-so long to do.

Definition (Omega). We say that $f(x) = \Omega(g(x))$ if there is an $\epsilon > 0$ and a sequence $x_1, x_2, x_3, \ldots \to \infty$ such that $\forall j : |f(x_j)| > \epsilon g(x_j)$.

3. Show $2^x = \Omega(x^\alpha)$ (for any $\alpha > 0$).

Definition. A function f is of **exponential growth** if there exists c > 1 such that $f(x) = \Omega(c^x)$ and there exists d such that $f(x) = O(d^x)$.

- 4. Show that $f(x) = 2^x$ grows exponentially according to this definition.
- 5. How about $f(x) = 2^x + x^{100}$?