Last name _____

First name

LARSON—MATH 356—CLASSROOM WORKSHEET 06 Orders of Magnitude

Review

- How "fast" is Dijkstra's algorithm? What can we say here?
- Why does e^x grow "faster" than any positive power of x?

Orders of Magnitude

- 1. Explain why 2^x grows *faster* than x^{α} for any positive α .
- 2. Explain why x^{α} grows *faster* than log x for any positive α .

Definition (little-o). We say that f(x) = o(g(x)) $(x \to \infty)$ if $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ exists and is equal to 0.

- 3. Check these examples:
 - (a) $x^2 = o(x^5)$.
 - (b) $\sin x = o(x)$.
 - (c) $14.709\sqrt{x} = o(\frac{x}{2} + 7\cos x).$
 - (d) 1/x = o(1).
 - (e) $23 \log x = o(x^{.02})$

Definition (big-O). We say that f(x) = O(g(x)) $(x \to \infty)$ if $\exists C, x_0$ such that |f(x)| < Cg(x) $(\forall x > x_0)$.

- 4. Check these examples:
 - (a) $\sin x = O(x)$.

(b)
$$\sin x = O(1)$$
.

(c)
$$x^3 + 5x^2 + 77\cos x = O(x^5)$$
.

(d)
$$\frac{1}{(1+x^2)} = O(1).$$

Definition (Theta). We say that $f(x) = \Theta(g(x))$ if there are constants c1 > 0, c2 > 0, x_0 such that for all $x > x_0$, it is true that $c_1g(x) < f(x) < c_2g(x)$.

5. Check these examples:

(a)
$$(x+1)^2 = \Theta(3x^2)$$
.

(b)
$$\frac{(x^2+5x+7)}{(5x^3+7x+2)} = \Theta(\frac{1}{x}).$$

(c)
$$\sqrt{3} + \sqrt{2x} = \Theta(x^{\frac{1}{4}}).$$

(d)
$$(1 + \frac{3}{x})^x = \Theta(1).$$

Definition (twiddles). We say that $f(x) \sim g(x)$ if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$.

6. What are some examples?