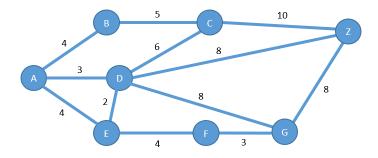
Last name	

First name _____

LARSON—MATH 356—CLASSROOM WORKSHEET 05 Dijkstra's Algorithm & Orders of Magnitude

Review

• What is Dijkstra's algorithm?



1. Use Dijkstra's algorithm to find a shortest path from A to Z.

2. How "fast" is Dijkstra's algorithm? What can we say here?

Orders of Magnitude

3. Explain why e^x grows *faster* than x^{α} for any positive α .

- 4. Explain why 2^x grows *faster* than x^{α} for any positive α .
- 5. Explain why x^{α} grows *faster* than log x for any positive α .

Definition (little-o). We say that f(x) = o(g(x)) $(x \to \infty)$ if $\lim x \to \infty \frac{f(x)}{g(x)}$ exists and is equal to 0

- 6. Check these examples:
 - (a) $x^2 = o(x^5)$.
 - (b) $\sin x = o(x)$.
 - (c) $14.709\sqrt{x} = o(\frac{x}{2} + 7\cos x).$
 - (d) 1/x = o(1).
 - (e) $23 \log x = o(x^{.02})$

Definition (big-O). We say that f(x) = O(g(x)) $(x \to \infty)$ if $\exists C, x_0$ such that |f(x)| < Cg(x) $(\forall x > x_0)$.

- 7. Check these examples:
 - (a) $\sin x = O(x)$.