Last name		
First name		

LARSON—MATH 353–HOMEWORK WORKSHEET 05 Conjecturing in CoCalc/SAGE.

- 1. Sign in to your CoCalc account.
 - (a) Start the Chrome browser.
 - (b) Go to https://cocalc.com
 - (c) Log in to your account.
 - (d) You should see an existing Project for our class. Click on that.
 - (e) Make sure you are in your Home directory (if you put files in the Handouts directory they could be overwritten.)
 - (f) Click "New", then "Jupyter Notebook", then call it 353-h05.
 - (g) Make sure you have SAGE as the kernel.

Review: setting up Conjecturing

- (a) We set up the conjecturing program by following the steps at: http://nvcleemp.github.io/conjecturing/
- (b) Check that you have a conjecturing.py file and an expressions file in your Home directory.

Facts about the Produced Conjectures

- (1) **Truth**. They are TRUE for every input object.
- (2) **Significance**. Each conjecture, when added to the list of conjectures, was "better" for at least one input object than any previously stored conjecture.

The **motivation** for this exercise is to practice using the Conjecturing program, and to demonstrate that it can be used for *any* kinds of objects which can be represented to a computer. Here we will use graphs as an example.

For background, read the Wikipedia page on graph theory: https://en.wikipedia.org/wiki/Graph_theory.

- 2. Make a text cell in your Jupyter notebook. Explain what a *complete graph* is.
- 3. Code and run.

```
K5 = graphs.CompleteGraph(5)
K5.show()
```

- 4. Define K4 to be the complete graph with 4 vertices and make a picture of it.
- 5. Define K3 to be the complete graph with 3 vertices and make a picture of it.

- 6. What is the *order* of a graph? Make a new text cell in your Jupyter notebook and explain. What is the order of K3, K4, K5?
- 7. What is the *size* of a graph? Make a new text cell in your Jupyter notebook and explain. What is the size of K3, K4, K5?
- 8. What is the *degree* of a vertex? Make a new text cell in your Jupyter notebook and explain. What is the degree of every vertex of K3, K4, K5?
- 9. Code and test each of the following procedures.

```
def size(g):
    return g.size()

def order(n):
    return g.order()

def max_degree(g):
    return max(g.degree())
```

10. Here is a minimal test for generating upper-bound conjectures for a the size of a graph.

If a conjecture is true, the only way to be certain is to *prove* it. If it is false, the only way to be certain of that is to find an example that demonstrates falsity (a *counterexample*).

- 11. What conjectures do you get? (Are they true? If not find a counterexample and add it to Sage. Then re-run to get new conjectures.)
- 12. We can get better conjectures by adding more graph invariants. What can we add?
- 13. Now generate lower-bound conjectures for the size of a graph.

Getting your classwork recorded

When you are done, before you leave class...

- (a) Click the "Print" menu choice (under "File") and make a pdf of this worksheet (html is OK too).
- (b) Send me an email (clarson@vcu.edu) with an informative header like "Math 353 h05 worksheet attached" (so that it will be properly recorded).
- (c) Remember to attach today's classroom worksheet!