Last name	
First name	

LARSON—MATH 353-HOMEWORK WORKSHEET 03

Suggestions: Write out lots of examples. Collect evidence. Doodle. You won't sit down knowing the right idea. But it **will** come if you start early, wrestle with the problem, read, sleep on it, and come back to it.

- 1. Suppose a, b and n are positive integers. Prove that if $a^n|b^n$, then a|b.
- 2. Suppose p is a prime and a and k are positive integers. Prove that if $p|a^k$, then $p^k|a^k$.
- 3. Prove that if a positive integer n is a perfect square, then n cannot be written in the form 4k + 3 for k an integer. (Hint: Compute the remainder upon division by 4 of each of $(4m)^2$, $(4m + 1)^2$, $(4m + 2)^2$, and $(4m + 3)^2$.)
- 4. Prove that no integer in the sequence 11, 111, 1111, 11111, 111111, ... is a perfect square. (Hint: 111111 = 111108 + 3 = 4k + 3.)